//*************************************************************************** // Si7021 module for ESP8266 with nodeMCU // fetchbot @github // MIT license, http://opensource.org/licenses/MIT //*************************************************************************** #include "module.h" #include "lauxlib.h" #include "platform.h" #include "osapi.h" //*************************************************************************** // I2C ADDRESS DEFINITON //*************************************************************************** #define ADS1115_I2C_ADDR_GND (0x48) #define ADS1115_I2C_ADDR_VDD (0x49) #define ADS1115_I2C_ADDR_SDA (0x4A) #define ADS1115_I2C_ADDR_SCL (0x4B) //*************************************************************************** // POINTER REGISTER //*************************************************************************** #define ADS1115_POINTER_MASK (0x03) #define ADS1115_POINTER_CONVERSION (0x00) #define ADS1115_POINTER_CONFIG (0x01) #define ADS1115_POINTER_THRESH_LOW (0x02) #define ADS1115_POINTER_THRESH_HI (0x03) //*************************************************************************** // CONFIG REGISTER //*************************************************************************** #define ADS1115_OS_MASK (0x8000) #define ADS1115_OS_NON (0x0000) #define ADS1115_OS_SINGLE (0x8000) // Write: Set to start a single-conversion #define ADS1115_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress #define ADS1115_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion #define ADS1115_MUX_MASK (0x7000) #define ADS1115_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default) #define ADS1115_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3 #define ADS1115_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3 #define ADS1115_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3 #define ADS1115_MUX_SINGLE_0 (0x4000) // Single-ended AIN0 #define ADS1115_MUX_SINGLE_1 (0x5000) // Single-ended AIN1 #define ADS1115_MUX_SINGLE_2 (0x6000) // Single-ended AIN2 #define ADS1115_MUX_SINGLE_3 (0x7000) // Single-ended AIN3 #define ADS1115_PGA_MASK (0x0E00) #define ADS1115_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3 #define ADS1115_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1 #define ADS1115_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2 (default) #define ADS1115_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4 #define ADS1115_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8 #define ADS1115_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16 #define ADS1115_MODE_MASK (0x0100) #define ADS1115_MODE_CONTIN (0x0000) // Continuous conversion mode #define ADS1115_MODE_SINGLE (0x0100) // Power-down single-shot mode (default) #define ADS1115_DR_MASK (0x00E0) #define ADS1115_DR_8SPS (0x0000) // 8 samples per second #define ADS1115_DR_16SPS (0x0020) // 16 samples per second #define ADS1115_DR_32SPS (0x0040) // 32 samples per second #define ADS1115_DR_64SPS (0x0060) // 64 samples per second #define ADS1115_DR_128SPS (0x0080) // 128 samples per second (default) #define ADS1115_DR_250SPS (0x00A0) // 250 samples per second #define ADS1115_DR_475SPS (0x00C0) // 475 samples per second #define ADS1115_DR_860SPS (0x00E0) // 860 samples per second #define ADS1115_CMODE_MASK (0x0010) #define ADS1115_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default) #define ADS1115_CMODE_WINDOW (0x0010) // Window comparator #define ADS1115_CPOL_MASK (0x0008) #define ADS1115_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default) #define ADS1115_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active #define ADS1115_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted #define ADS1115_CLAT_NONLAT (0x0000) // Non-latching comparator (default) #define ADS1115_CLAT_LATCH (0x0004) // Latching comparator #define ADS1115_CQUE_MASK (0x0003) #define ADS1115_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions #define ADS1115_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions #define ADS1115_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions #define ADS1115_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default) //*************************************************************************** static const uint8_t ads1115_i2c_id = 0; static const uint8_t general_i2c_addr = 0x00; static const uint8_t ads1115_i2c_reset = 0x06; static uint8_t ads1115_i2c_addr = ADS1115_I2C_ADDR_GND; static uint16_t ads1115_os = ADS1115_OS_SINGLE; static uint16_t ads1115_gain = ADS1115_PGA_6_144V; static uint16_t ads1115_samples = ADS1115_DR_128SPS; static uint16_t ads1115_channel = ADS1115_MUX_SINGLE_0; static uint16_t ads1115_comp = ADS1115_CQUE_NONE; static uint16_t ads1115_mode = ADS1115_MODE_SINGLE; static uint16_t ads1115_threshold_low = 0x8000; static uint16_t ads1115_threshold_hi = 0x7FFF; static uint16_t ads1115_config = 0x8583; static uint16_t ads1115_conversion = 0; static double ads1115_volt = 0; os_timer_t ads1115_timer; // timer for conversion delay int ads1115_timer_ref; // callback when readout is ready static int ads1115_lua_readoutdone(void); static uint8_t write_reg(uint8_t reg, uint16_t config) { platform_i2c_send_start(ads1115_i2c_id); platform_i2c_send_address(ads1115_i2c_id, ads1115_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER); platform_i2c_send_byte(ads1115_i2c_id, reg); platform_i2c_send_byte(ads1115_i2c_id, (uint8_t)(config >> 8)); platform_i2c_send_byte(ads1115_i2c_id, (uint8_t)(config & 0xFF)); platform_i2c_send_stop(ads1115_i2c_id); } static uint16_t read_reg(uint8_t reg) { platform_i2c_send_start(ads1115_i2c_id); platform_i2c_send_address(ads1115_i2c_id, ads1115_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER); platform_i2c_send_byte(ads1115_i2c_id, reg); platform_i2c_send_stop(ads1115_i2c_id); platform_i2c_send_start(ads1115_i2c_id); platform_i2c_send_address(ads1115_i2c_id, ads1115_i2c_addr, PLATFORM_I2C_DIRECTION_RECEIVER); uint16_t buf = (platform_i2c_recv_byte(ads1115_i2c_id, 1) << 8); buf += platform_i2c_recv_byte(ads1115_i2c_id, 0); platform_i2c_send_stop(ads1115_i2c_id); return buf; } // convert ADC value to voltage corresponding to PGA settings static double get_volt(uint16_t value) { double volt = 0; switch (ads1115_gain) { case (ADS1115_PGA_6_144V): volt = (int16_t)value * 0.1875; break; case (ADS1115_PGA_4_096V): volt = (int16_t)value * 0.125; break; case (ADS1115_PGA_2_048V): volt = (int16_t)value * 0.0625; break; case (ADS1115_PGA_1_024V): volt = (int16_t)value * 0.03125; break; case (ADS1115_PGA_0_512V): volt = (int16_t)value * 0.015625; break; case (ADS1115_PGA_0_256V): volt = (int16_t)value * 0.0078125; break; } return volt; } // convert threshold in volt to ADC value corresponding to PGA settings static uint8_t get_value(int16_t *volt) { switch (ads1115_gain) { case (ADS1115_PGA_6_144V): if ((*volt >= 6144) || (*volt < -6144) || ((*volt < 0) && (ads1115_channel >> 14))) return 1; *volt = *volt / 0.1875; break; case (ADS1115_PGA_4_096V): if ((*volt >= 4096) || (*volt < -4096) || ((*volt < 0) && (ads1115_channel >> 14))) return 1; *volt = *volt / 0.125; break; case (ADS1115_PGA_2_048V): if ((*volt >= 2048) || (*volt < -2048) || ((*volt < 0) && (ads1115_channel >> 14))) return 1; *volt = *volt / 0.0625; break; case (ADS1115_PGA_1_024V): if ((*volt >= 1024) || (*volt < -1024) || ((*volt < 0) && (ads1115_channel >> 14))) return 1; *volt = *volt / 0.03125; break; case (ADS1115_PGA_0_512V): if ((*volt >= 512) || (*volt < -512) || ((*volt < 0) && (ads1115_channel >> 14))) return 1; *volt = *volt / 0.015625; break; case (ADS1115_PGA_0_256V): if ((*volt >= 256) || (*volt < -256) || ((*volt < 0) && (ads1115_channel >> 14))) return 1; *volt = *volt / 0.0078125; break; } return 0; } // Initializes ADC // Lua: ads11115.setup(ADDRESS) static int ads1115_lua_setup(lua_State *L) { // check variables if (!lua_isnumber(L, 1)) { return luaL_error(L, "wrong arg range"); } ads1115_i2c_addr = luaL_checkinteger(L, 1); if (!((ads1115_i2c_addr == ADS1115_I2C_ADDR_GND) || (ads1115_i2c_addr == ADS1115_I2C_ADDR_VDD) || (ads1115_i2c_addr == ADS1115_I2C_ADDR_SDA) || (ads1115_i2c_addr == ADS1115_I2C_ADDR_SCL))) { return luaL_error(L, "Invalid argument: adddress"); } platform_i2c_send_start(ads1115_i2c_id); platform_i2c_send_address(ads1115_i2c_id, general_i2c_addr, PLATFORM_I2C_DIRECTION_TRANSMITTER); platform_i2c_send_byte(ads1115_i2c_id, ads1115_i2c_reset); platform_i2c_send_stop(ads1115_i2c_id); // check for device on i2c bus if (read_reg(ADS1115_POINTER_CONFIG) != 0x8583) { return luaL_error(L, "found no device"); } return 0; } // Change ADC settings // Lua: ads1115.setting(GAIN,SAMPLES,CHANNEL,MODE[,CONVERSION_RDY][,COMPARATOR,THRESHOLD_LOW,THRESHOLD_HI]) static int ads1115_lua_setting(lua_State *L) { // check variables if (!lua_isnumber(L, 1) || !lua_isnumber(L, 2) || !lua_isnumber(L, 3) || !lua_isnumber(L, 4)) { return luaL_error(L, "wrong arg range"); } ads1115_gain = luaL_checkinteger(L, 1); if (!((ads1115_gain == ADS1115_PGA_6_144V) || (ads1115_gain == ADS1115_PGA_4_096V) || (ads1115_gain == ADS1115_PGA_2_048V) || (ads1115_gain == ADS1115_PGA_1_024V) || (ads1115_gain == ADS1115_PGA_0_512V) || (ads1115_gain == ADS1115_PGA_0_256V))) { return luaL_error(L, "Invalid argument: gain"); } ads1115_samples = luaL_checkinteger(L, 2); if (!((ads1115_samples == ADS1115_DR_8SPS) || (ads1115_samples == ADS1115_DR_16SPS) || (ads1115_samples == ADS1115_DR_32SPS) || (ads1115_samples == ADS1115_DR_64SPS) || (ads1115_samples == ADS1115_DR_128SPS) || (ads1115_samples == ADS1115_DR_250SPS) || (ads1115_samples == ADS1115_DR_475SPS) || (ads1115_samples == ADS1115_DR_860SPS))) { return luaL_error(L, "Invalid argument: samples"); } ads1115_channel = luaL_checkinteger(L, 3); if (!((ads1115_channel == ADS1115_MUX_SINGLE_0) || (ads1115_channel == ADS1115_MUX_SINGLE_1) || (ads1115_channel == ADS1115_MUX_SINGLE_2) || (ads1115_channel == ADS1115_MUX_SINGLE_3) || (ads1115_channel == ADS1115_MUX_DIFF_0_1) || (ads1115_channel == ADS1115_MUX_DIFF_0_3) || (ads1115_channel == ADS1115_MUX_DIFF_1_3) || (ads1115_channel == ADS1115_MUX_DIFF_2_3))) { return luaL_error(L, "Invalid argument: channel"); } ads1115_mode = luaL_checkinteger(L, 4); if (!((ads1115_mode == ADS1115_MODE_SINGLE) || (ads1115_mode == ADS1115_MODE_CONTIN))) { return luaL_error(L, "Invalid argument: mode"); } if (ads1115_mode == ADS1115_MODE_SINGLE) { ads1115_os = ADS1115_OS_SINGLE; } else { ads1115_os = ADS1115_OS_NON; } ads1115_comp = ADS1115_CQUE_NONE; // Parse optional parameters if (lua_isnumber(L, 5) && !(lua_isnumber(L, 6) || lua_isnumber(L, 7))) { // conversion ready mode ads1115_comp = luaL_checkinteger(L, 5); if (!((ads1115_comp == ADS1115_CQUE_1CONV) || (ads1115_comp == ADS1115_CQUE_2CONV) || (ads1115_comp == ADS1115_CQUE_4CONV))) { return luaL_error(L, "Invalid argument: conversion ready mode"); } ads1115_threshold_low = 0x7FFF; ads1115_threshold_hi = 0x8000; write_reg(ADS1115_POINTER_THRESH_LOW, ads1115_threshold_low); write_reg(ADS1115_POINTER_THRESH_HI, ads1115_threshold_hi); } else if (lua_isnumber(L, 5) && lua_isnumber(L, 6) && lua_isnumber(L, 7)) { // comparator mode ads1115_comp = luaL_checkinteger(L, 5); if (!((ads1115_comp == ADS1115_CQUE_1CONV) || (ads1115_comp == ADS1115_CQUE_2CONV) || (ads1115_comp == ADS1115_CQUE_4CONV))) { return luaL_error(L, "Invalid argument: comparator mode"); } ads1115_threshold_low = luaL_checkinteger(L, 5); ads1115_threshold_hi = luaL_checkinteger(L, 6); if ((int16_t)ads1115_threshold_low > (int16_t)ads1115_threshold_hi) { return luaL_error(L, "Invalid argument: threshold_low > threshold_hi"); } if (get_value(&ads1115_threshold_low)) { return luaL_error(L, "Invalid argument: threshold_low"); } if (get_value(&ads1115_threshold_hi)) { return luaL_error(L, "Invalid argument: threshold_hi"); } write_reg(ADS1115_POINTER_THRESH_LOW, ads1115_threshold_low); write_reg(ADS1115_POINTER_THRESH_HI, ads1115_threshold_hi); } ads1115_config = (ads1115_os | ads1115_channel | ads1115_gain | ads1115_mode | ads1115_samples | ADS1115_CMODE_TRAD | ADS1115_CPOL_ACTVLOW | ADS1115_CLAT_NONLAT | ads1115_comp); write_reg(ADS1115_POINTER_CONFIG, ads1115_config); return 0; } // Read the conversion register from the ADC // Lua: ads1115.startread(function(volt, voltdec, adc) print(volt,voltdec,adc) end) static int ads1115_lua_startread(lua_State *L) { if (((ads1115_comp == ADS1115_CQUE_1CONV) || (ads1115_comp == ADS1115_CQUE_2CONV) || (ads1115_comp == ADS1115_CQUE_4CONV)) && (ads1115_threshold_low == 0x7FFF) && (ads1115_threshold_hi == 0x8000)) { if (ads1115_mode == ADS1115_MODE_SINGLE) { write_reg(ADS1115_POINTER_CONFIG, ads1115_config); } return 0; } else { luaL_argcheck(L, (lua_type(L, 1) == LUA_TFUNCTION || lua_type(L, 1) == LUA_TLIGHTFUNCTION), 1, "Must be function"); lua_pushvalue(L, 1); ads1115_timer_ref = luaL_ref(L, LUA_REGISTRYINDEX); if (ads1115_mode == ADS1115_MODE_SINGLE) { write_reg(ADS1115_POINTER_CONFIG, ads1115_config); } // Start a timer to wait until ADC conversion is done os_timer_disarm (&ads1115_timer); os_timer_setfn (&ads1115_timer, (os_timer_func_t *)ads1115_lua_readoutdone, NULL); switch (ads1115_samples) { case (ADS1115_DR_8SPS): os_timer_arm (&ads1115_timer, 150, 0); break; case (ADS1115_DR_16SPS): os_timer_arm (&ads1115_timer, 75, 0); break; case (ADS1115_DR_32SPS): os_timer_arm (&ads1115_timer, 35, 0); break; case (ADS1115_DR_64SPS): os_timer_arm (&ads1115_timer, 20, 0); break; case (ADS1115_DR_128SPS): os_timer_arm (&ads1115_timer, 10, 0); break; case (ADS1115_DR_250SPS): os_timer_arm (&ads1115_timer, 5, 0); break; case (ADS1115_DR_475SPS): os_timer_arm (&ads1115_timer, 3, 0); break; case (ADS1115_DR_860SPS): os_timer_arm (&ads1115_timer, 2, 0); break; } return 0; } } // adc conversion timer callback static int ads1115_lua_readoutdone(void) { ads1115_conversion = read_reg(ADS1115_POINTER_CONVERSION); ads1115_volt = get_volt(ads1115_conversion); int ads1115_voltdec = (int)((ads1115_volt - (int)ads1115_volt) * 1000); ads1115_voltdec = ads1115_voltdec>0?ads1115_voltdec:0-ads1115_voltdec; lua_State *L = lua_getstate(); os_timer_disarm (&ads1115_timer); lua_rawgeti (L, LUA_REGISTRYINDEX, ads1115_timer_ref); luaL_unref (L, LUA_REGISTRYINDEX, ads1115_timer_ref); ads1115_timer_ref = LUA_NOREF; lua_pushnumber(L, ads1115_volt); lua_pushinteger(L, ads1115_voltdec); lua_pushinteger(L, ads1115_conversion); lua_call (L, 3, 0); } // Read the conversion register from the ADC // Lua: volt,voltdec,adc = ads1115.read() static int ads1115_lua_read(lua_State *L) { ads1115_conversion = read_reg(ADS1115_POINTER_CONVERSION); ads1115_volt = get_volt(ads1115_conversion); int ads1115_voltdec = (int)((ads1115_volt - (int)ads1115_volt) * 1000); ads1115_voltdec = ads1115_voltdec>0?ads1115_voltdec:0-ads1115_voltdec; lua_pushnumber(L, ads1115_volt); lua_pushinteger(L, ads1115_voltdec); lua_pushinteger(L, ads1115_conversion); return 3; } static const LUA_REG_TYPE ads1115_map[] = { { LSTRKEY( "setup" ), LFUNCVAL(ads1115_lua_setup) }, { LSTRKEY( "setting" ), LFUNCVAL(ads1115_lua_setting) }, { LSTRKEY( "startread" ), LFUNCVAL(ads1115_lua_startread) }, { LSTRKEY( "read" ), LFUNCVAL(ads1115_lua_read) }, { LSTRKEY( "ADDR_GND" ), LNUMVAL(ADS1115_I2C_ADDR_GND) }, { LSTRKEY( "ADDR_VDD" ), LNUMVAL(ADS1115_I2C_ADDR_VDD) }, { LSTRKEY( "ADDR_SDA" ), LNUMVAL(ADS1115_I2C_ADDR_SDA) }, { LSTRKEY( "ADDR_SCL" ), LNUMVAL(ADS1115_I2C_ADDR_SCL) }, { LSTRKEY( "SINGLE_SHOT" ), LNUMVAL(ADS1115_MODE_SINGLE) }, { LSTRKEY( "CONTINUOUS" ), LNUMVAL(ADS1115_MODE_CONTIN) }, { LSTRKEY( "DIFF_0_1" ), LNUMVAL(ADS1115_MUX_DIFF_0_1) }, { LSTRKEY( "DIFF_0_3" ), LNUMVAL(ADS1115_MUX_DIFF_0_3) }, { LSTRKEY( "DIFF_1_3" ), LNUMVAL(ADS1115_MUX_DIFF_1_3) }, { LSTRKEY( "DIFF_2_3" ), LNUMVAL(ADS1115_MUX_DIFF_2_3) }, { LSTRKEY( "SINGLE_0" ), LNUMVAL(ADS1115_MUX_SINGLE_0) }, { LSTRKEY( "SINGLE_1" ), LNUMVAL(ADS1115_MUX_SINGLE_1) }, { LSTRKEY( "SINGLE_2" ), LNUMVAL(ADS1115_MUX_SINGLE_2) }, { LSTRKEY( "SINGLE_3" ), LNUMVAL(ADS1115_MUX_SINGLE_3) }, { LSTRKEY( "GAIN_6_144V" ), LNUMVAL(ADS1115_PGA_6_144V) }, { LSTRKEY( "GAIN_4_096V" ), LNUMVAL(ADS1115_PGA_4_096V) }, { LSTRKEY( "GAIN_2_048V" ), LNUMVAL(ADS1115_PGA_2_048V) }, { LSTRKEY( "GAIN_1_024V" ), LNUMVAL(ADS1115_PGA_1_024V) }, { LSTRKEY( "GAIN_0_512V" ), LNUMVAL(ADS1115_PGA_0_512V) }, { LSTRKEY( "GAIN_0_256V" ), LNUMVAL(ADS1115_PGA_0_256V) }, { LSTRKEY( "DR_8SPS" ), LNUMVAL(ADS1115_DR_8SPS) }, { LSTRKEY( "DR_16SPS" ), LNUMVAL(ADS1115_DR_16SPS) }, { LSTRKEY( "DR_32SPS" ), LNUMVAL(ADS1115_DR_32SPS) }, { LSTRKEY( "DR_64SPS" ), LNUMVAL(ADS1115_DR_64SPS) }, { LSTRKEY( "DR_128SPS" ), LNUMVAL(ADS1115_DR_128SPS) }, { LSTRKEY( "DR_250SPS" ), LNUMVAL(ADS1115_DR_250SPS) }, { LSTRKEY( "DR_475SPS" ), LNUMVAL(ADS1115_DR_475SPS) }, { LSTRKEY( "DR_860SPS" ), LNUMVAL(ADS1115_DR_860SPS) }, { LSTRKEY( "CONV_RDY_1" ), LNUMVAL(ADS1115_CQUE_1CONV) }, { LSTRKEY( "CONV_RDY_2" ), LNUMVAL(ADS1115_CQUE_2CONV) }, { LSTRKEY( "CONV_RDY_4" ), LNUMVAL(ADS1115_CQUE_4CONV) }, { LSTRKEY( "COMP_1CONV" ), LNUMVAL(ADS1115_CQUE_1CONV) }, { LSTRKEY( "COMP_2CONV" ), LNUMVAL(ADS1115_CQUE_2CONV) }, { LSTRKEY( "COMP_4CONV" ), LNUMVAL(ADS1115_CQUE_4CONV) }, { LNILKEY, LNILVAL } }; NODEMCU_MODULE(ADS1115, "ads1115", ads1115_map, NULL);