/*guys, srsly, turn on warnings in the makefile*/ #if defined(__GNUC__) #pragma GCC diagnostic warning "-Wall" #pragma GCC diagnostic warning "-Wextra" #pragma GCC diagnostic ignored "-Wunused-parameter" #endif /*------------------------------------- NEW TIMER API --------------------------------------- tmr.wdclr() -- not changed tmr.now() -- not changed tmr.time() -- not changed tmr.delay() -- not changed tmr.alarm() -- not changed tmr.stop() -- changed, see below. use tmr.unregister for old functionality tmr.register(id, interval, mode, function) bind function with timer and set the interval in ms the mode can be: tmr.ALARM_SINGLE for a single run alarm tmr.ALARM_SEMI for a multiple single run alarm tmr.ALARM_AUTO for a repating alarm tmr.register does NOT start the timer tmr.alarm is a tmr.register & tmr.start macro tmr.unregister(id) stop alarm, unbind function and clean up memory not needed for ALARM_SINGLE, as it unregisters itself tmr.start(id) ret: bool start a alarm, returns true on success tmr.stop(id) ret: bool stops a alarm, returns true on success this call dose not free any memory, to do so use tmr.unregister stopped alarms can be started with start tmr.interval(id, interval) set alarm interval, running alarm will be restarted tmr.state(id) ret: (bool, int) or nil returns alarm status (true=started/false=stopped) and mode nil if timer is unregistered tmr.softwd(int) set a negative value to stop the timer any other value starts the timer, when the countdown reaches zero, the device restarts the timer units are seconds */ #include "module.h" #include "lauxlib.h" #include "platform.h" #include "c_types.h" #include "user_interface.h" #include "swTimer/swTimer.h" #define TIMER_MODE_OFF 3 #define TIMER_MODE_SINGLE 0 #define TIMER_MODE_SEMI 2 #define TIMER_MODE_AUTO 1 #define TIMER_IDLE_FLAG (1<<7) #define STRINGIFY_VAL(x) #x #define STRINGIFY(x) STRINGIFY_VAL(x) // assuming system_timer_reinit() has *not* been called #define MAX_TIMEOUT_DEF 6870947 //SDK 1.5.3 limit (0x68D7A3) static const uint32 MAX_TIMEOUT=MAX_TIMEOUT_DEF; static const char* MAX_TIMEOUT_ERR_STR = "Range: 1-"STRINGIFY(MAX_TIMEOUT_DEF); typedef struct{ os_timer_t os; sint32_t lua_ref, self_ref; uint32_t interval; uint8_t mode; }timer_struct_t; typedef timer_struct_t* timer_t; // The previous implementation extended the rtc counter to 64 bits, and then // applied rtc2sec with the current calibration value to that 64 bit value. // This means that *ALL* clock ticks since bootup are counted with the *current* // clock period. In extreme cases (long uptime, sudden temperature change), this // could result in tmr.time() going backwards.... // This implementation instead applies rtc2usec to short time intervals only (the // longest being around 1 second), and then accumulates the resulting microseconds // in a 64 bit counter. That's guaranteed to be monotonic, and should be a lot closer // to representing an actual uptime. static uint32_t rtc_time_cali=0; static uint32_t last_rtc_time=0; static uint64_t last_rtc_time_us=0; static sint32_t soft_watchdog = -1; static timer_struct_t alarm_timers[NUM_TMR]; static os_timer_t rtc_timer; static void alarm_timer_common(void* arg){ timer_t tmr = (timer_t)arg; lua_State* L = lua_getstate(); if(tmr->lua_ref == LUA_NOREF) return; lua_rawgeti(L, LUA_REGISTRYINDEX, tmr->lua_ref); if (tmr->self_ref == LUA_REFNIL) { uint32_t id = tmr - alarm_timers; lua_pushinteger(L, id); } else { lua_rawgeti(L, LUA_REGISTRYINDEX, tmr->self_ref); } //if the timer was set to single run we clean up after it if(tmr->mode == TIMER_MODE_SINGLE){ luaL_unref(L, LUA_REGISTRYINDEX, tmr->lua_ref); tmr->lua_ref = LUA_NOREF; tmr->mode = TIMER_MODE_OFF; }else if(tmr->mode == TIMER_MODE_SEMI){ tmr->mode |= TIMER_IDLE_FLAG; } if (tmr->mode != TIMER_MODE_AUTO && tmr->self_ref != LUA_REFNIL) { luaL_unref(L, LUA_REGISTRYINDEX, tmr->self_ref); tmr->self_ref = LUA_NOREF; } lua_call(L, 1, 0); } // Lua: tmr.delay( us ) static int tmr_delay( lua_State* L ){ sint32_t us = luaL_checkinteger(L, 1); if(us <= 0) return luaL_error(L, "wrong arg range"); while(us >= 10000){ us -= 10000; os_delay_us(10000); system_soft_wdt_feed (); } if(us>0){ os_delay_us(us); system_soft_wdt_feed (); } return 0; } // Lua: tmr.now() , return system timer in us static int tmr_now(lua_State* L){ uint32_t now = 0x7FFFFFFF & system_get_time(); lua_pushinteger(L, now); return 1; } static timer_t tmr_get( lua_State *L, int stack ) { // Deprecated: static 0-6 timers control by index. luaL_argcheck(L, (lua_isuserdata(L, stack) || lua_isnumber(L, stack)), 1, "timer object or numerical ID expected"); if (lua_isuserdata(L, stack)) { return (timer_t)luaL_checkudata(L, stack, "tmr.timer"); } else { uint32_t id = luaL_checkinteger(L, 1); luaL_argcheck(L, platform_tmr_exists(id), 1, "invalid timer index"); return &alarm_timers[id]; } return 0; } // Lua: tmr.register( id / ref, interval, mode, function ) static int tmr_register(lua_State* L){ timer_t tmr = tmr_get(L, 1); uint32_t interval = luaL_checkinteger(L, 2); uint8_t mode = luaL_checkinteger(L, 3); luaL_argcheck(L, (interval > 0 && interval <= MAX_TIMEOUT), 2, MAX_TIMEOUT_ERR_STR); luaL_argcheck(L, (mode == TIMER_MODE_SINGLE || mode == TIMER_MODE_SEMI || mode == TIMER_MODE_AUTO), 3, "Invalid mode"); luaL_argcheck(L, (lua_type(L, 4) == LUA_TFUNCTION || lua_type(L, 4) == LUA_TLIGHTFUNCTION), 4, "Must be function"); //get the lua function reference lua_pushvalue(L, 4); sint32_t ref = luaL_ref(L, LUA_REGISTRYINDEX); if(!(tmr->mode & TIMER_IDLE_FLAG) && tmr->mode != TIMER_MODE_OFF) os_timer_disarm(&tmr->os); //there was a bug in this part, the second part of the following condition was missing if(tmr->lua_ref != LUA_NOREF && tmr->lua_ref != ref) luaL_unref(L, LUA_REGISTRYINDEX, tmr->lua_ref); tmr->lua_ref = ref; tmr->mode = mode|TIMER_IDLE_FLAG; tmr->interval = interval; os_timer_setfn(&tmr->os, alarm_timer_common, tmr); return 0; } // Lua: tmr.start( id / ref ) static int tmr_start(lua_State* L){ timer_t tmr = tmr_get(L, 1); if (tmr->self_ref == LUA_NOREF) { lua_pushvalue(L, 1); tmr->self_ref = luaL_ref(L, LUA_REGISTRYINDEX); } //we return false if the timer is not idle if(!(tmr->mode&TIMER_IDLE_FLAG)){ lua_pushboolean(L, 0); }else{ tmr->mode &= ~TIMER_IDLE_FLAG; os_timer_arm(&tmr->os, tmr->interval, tmr->mode==TIMER_MODE_AUTO); lua_pushboolean(L, 1); } return 1; } // Lua: tmr.alarm( id / ref, interval, repeat, function ) static int tmr_alarm(lua_State* L){ tmr_register(L); return tmr_start(L); } // Lua: tmr.stop( id / ref ) static int tmr_stop(lua_State* L){ timer_t tmr = tmr_get(L, 1); if (tmr->self_ref != LUA_REFNIL) { luaL_unref(L, LUA_REGISTRYINDEX, tmr->self_ref); tmr->self_ref = LUA_NOREF; } //we return false if the timer is idle (of not registered) if(!(tmr->mode & TIMER_IDLE_FLAG) && tmr->mode != TIMER_MODE_OFF){ tmr->mode |= TIMER_IDLE_FLAG; os_timer_disarm(&tmr->os); lua_pushboolean(L, 1); }else{ lua_pushboolean(L, 0); } return 1; } #ifdef ENABLE_TIMER_SUSPEND static int tmr_suspend(lua_State* L){ timer_t tmr = tmr_get(L, 1); if((tmr->mode & TIMER_IDLE_FLAG) == 1){ return luaL_error(L, "timer not armed"); } int retval = swtmr_suspend(&tmr->os); if(retval != SWTMR_OK){ return luaL_error(L, swtmr_errorcode2str(retval)); } else{ lua_pushboolean(L, true); } return 1; } static int tmr_resume(lua_State* L){ timer_t tmr = tmr_get(L, 1); if(swtmr_suspended_test(&tmr->os) == FALSE){ return luaL_error(L, "timer not suspended"); } int retval = swtmr_resume(&tmr->os); if(retval != SWTMR_OK){ return luaL_error(L, swtmr_errorcode2str(retval)); } else{ lua_pushboolean(L, true); } return 1; } static int tmr_suspend_all (lua_State *L) { sint32 retval = swtmr_suspend(NULL); // lua_pushnumber(L, swtmr_suspend(NULL)); if(retval!=SWTMR_OK){ return luaL_error(L, swtmr_errorcode2str(retval)); } else{ lua_pushboolean(L, true); } return 1; } static int tmr_resume_all (lua_State *L) { sint32 retval = swtmr_resume(NULL); if(retval!=SWTMR_OK){ return luaL_error(L, swtmr_errorcode2str(retval)); } else{ lua_pushboolean(L, true); } return 1; } #endif // Lua: tmr.unregister( id / ref ) static int tmr_unregister(lua_State* L){ timer_t tmr = tmr_get(L, 1); if (tmr->self_ref != LUA_REFNIL) { luaL_unref(L, LUA_REGISTRYINDEX, tmr->self_ref); tmr->self_ref = LUA_NOREF; } if(!(tmr->mode & TIMER_IDLE_FLAG) && tmr->mode != TIMER_MODE_OFF) os_timer_disarm(&tmr->os); if(tmr->lua_ref != LUA_NOREF) luaL_unref(L, LUA_REGISTRYINDEX, tmr->lua_ref); tmr->lua_ref = LUA_NOREF; tmr->mode = TIMER_MODE_OFF; return 0; } // Lua: tmr.interval( id / ref, interval ) static int tmr_interval(lua_State* L){ timer_t tmr = tmr_get(L, 1); uint32_t interval = luaL_checkinteger(L, 2); luaL_argcheck(L, (interval > 0 && interval <= MAX_TIMEOUT), 2, MAX_TIMEOUT_ERR_STR); if(tmr->mode != TIMER_MODE_OFF){ tmr->interval = interval; if(!(tmr->mode&TIMER_IDLE_FLAG)){ os_timer_disarm(&tmr->os); os_timer_arm(&tmr->os, tmr->interval, tmr->mode==TIMER_MODE_AUTO); } } return 0; } // Lua: tmr.state( id / ref ) static int tmr_state(lua_State* L){ timer_t tmr = tmr_get(L, 1); if(tmr->mode == TIMER_MODE_OFF){ lua_pushnil(L); return 1; } lua_pushboolean(L, (tmr->mode & TIMER_IDLE_FLAG) == 0); lua_pushinteger(L, tmr->mode & (~TIMER_IDLE_FLAG)); #ifdef ENABLE_TIMER_SUSPEND lua_pushboolean(L, swtmr_suspended_test(&tmr->os)); #else lua_pushnil(L); #endif return 3; } /*I left the led comments 'couse I don't know why they are here*/ // extern void update_key_led(); // Lua: tmr.wdclr() static int tmr_wdclr( lua_State* L ){ system_soft_wdt_feed (); // update_key_led(); return 0; } //system_rtc_clock_cali_proc() returns //a fixed point value (12 bit fraction part) //it tells how many rtc clock ticks represent 1us. //the high 64 bits of the uint64_t multiplication //are unnedded (I did the math) static uint32_t rtc2usec(uint64_t rtc){ return (rtc*rtc_time_cali)>>12; } // This returns the number of microseconds uptime. Note that it relies on the rtc clock, // which is notoriously temperature dependent inline static uint64_t rtc_timer_update(bool do_calibration){ if (do_calibration || rtc_time_cali==0) rtc_time_cali=system_rtc_clock_cali_proc(); uint32_t current = system_get_rtc_time(); uint32_t since_last=current-last_rtc_time; // This will transparently deal with wraparound uint32_t us_since_last=rtc2usec(since_last); uint64_t now=last_rtc_time_us+us_since_last; // Only update if at least 100ms has passed since we last updated. // This prevents the rounding errors in rtc2usec from accumulating if (us_since_last>=100000) { last_rtc_time=current; last_rtc_time_us=now; } return now; } void rtc_callback(void *arg){ rtc_timer_update(true); if(soft_watchdog > 0){ soft_watchdog--; if(soft_watchdog == 0) system_restart(); } } // Lua: tmr.time() , return rtc time in second static int tmr_time( lua_State* L ){ uint64_t us=rtc_timer_update(false); lua_pushinteger(L, us/1000000); return 1; } // Lua: tmr.softwd( value ) static int tmr_softwd( lua_State* L ){ soft_watchdog = luaL_checkinteger(L, 1); return 0; } // Lua: tmr.create() static int tmr_create( lua_State *L ) { timer_t ud = (timer_t)lua_newuserdata(L, sizeof(timer_struct_t)); if (!ud) return luaL_error(L, "not enough memory"); luaL_getmetatable(L, "tmr.timer"); lua_setmetatable(L, -2); ud->lua_ref = LUA_NOREF; ud->self_ref = LUA_NOREF; ud->mode = TIMER_MODE_OFF; os_timer_disarm(&ud->os); return 1; } #if defined(SWTMR_DEBUG) static void tmr_printRegistry(lua_State* L){ swtmr_print_registry(); } static void tmr_printSuspended(lua_State* L){ swtmr_print_suspended(); } static void tmr_printTimerlist(lua_State* L){ swtmr_print_timer_list(); } #endif // Module function map static const LUA_REG_TYPE tmr_dyn_map[] = { { LSTRKEY( "register" ), LFUNCVAL( tmr_register ) }, { LSTRKEY( "alarm" ), LFUNCVAL( tmr_alarm ) }, { LSTRKEY( "start" ), LFUNCVAL( tmr_start ) }, { LSTRKEY( "stop" ), LFUNCVAL( tmr_stop ) }, { LSTRKEY( "unregister" ), LFUNCVAL( tmr_unregister ) }, { LSTRKEY( "state" ), LFUNCVAL( tmr_state ) }, { LSTRKEY( "interval" ), LFUNCVAL( tmr_interval) }, #ifdef ENABLE_TIMER_SUSPEND { LSTRKEY( "suspend" ), LFUNCVAL( tmr_suspend ) }, { LSTRKEY( "resume" ), LFUNCVAL( tmr_resume ) }, #endif { LSTRKEY( "__gc" ), LFUNCVAL( tmr_unregister ) }, { LSTRKEY( "__index" ), LROVAL( tmr_dyn_map ) }, { LNILKEY, LNILVAL } }; #if defined(SWTMR_DEBUG) static const LUA_REG_TYPE tmr_dbg_map[] = { { LSTRKEY( "printRegistry" ), LFUNCVAL( tmr_printRegistry ) }, { LSTRKEY( "printSuspended" ), LFUNCVAL( tmr_printSuspended ) }, { LSTRKEY( "printTimerlist" ), LFUNCVAL( tmr_printTimerlist ) }, { LNILKEY, LNILVAL } }; #endif static const LUA_REG_TYPE tmr_map[] = { { LSTRKEY( "delay" ), LFUNCVAL( tmr_delay ) }, { LSTRKEY( "now" ), LFUNCVAL( tmr_now ) }, { LSTRKEY( "wdclr" ), LFUNCVAL( tmr_wdclr ) }, { LSTRKEY( "softwd" ), LFUNCVAL( tmr_softwd ) }, { LSTRKEY( "time" ), LFUNCVAL( tmr_time ) }, { LSTRKEY( "register" ), LFUNCVAL( tmr_register ) }, { LSTRKEY( "alarm" ), LFUNCVAL( tmr_alarm ) }, { LSTRKEY( "start" ), LFUNCVAL( tmr_start ) }, { LSTRKEY( "stop" ), LFUNCVAL( tmr_stop ) }, #ifdef ENABLE_TIMER_SUSPEND { LSTRKEY( "suspend" ), LFUNCVAL( tmr_suspend ) }, { LSTRKEY( "suspend_all" ), LFUNCVAL( tmr_suspend_all ) }, { LSTRKEY( "resume" ), LFUNCVAL( tmr_resume ) }, { LSTRKEY( "resume_all" ), LFUNCVAL( tmr_resume_all ) }, #endif { LSTRKEY( "unregister" ), LFUNCVAL( tmr_unregister ) }, { LSTRKEY( "state" ), LFUNCVAL( tmr_state ) }, { LSTRKEY( "interval" ), LFUNCVAL( tmr_interval ) }, { LSTRKEY( "create" ), LFUNCVAL( tmr_create ) }, #if defined(SWTMR_DEBUG) { LSTRKEY( "debug" ), LROVAL( tmr_dbg_map ) }, #endif { LSTRKEY( "ALARM_SINGLE" ), LNUMVAL( TIMER_MODE_SINGLE ) }, { LSTRKEY( "ALARM_SEMI" ), LNUMVAL( TIMER_MODE_SEMI ) }, { LSTRKEY( "ALARM_AUTO" ), LNUMVAL( TIMER_MODE_AUTO ) }, { LNILKEY, LNILVAL } }; int luaopen_tmr( lua_State *L ){ int i; luaL_rometatable(L, "tmr.timer", (void *)tmr_dyn_map); for(i=0; i