-- *************************************************************************** -- tsl2561.lua -- Module for ESP8266 with nodeMCU -- Ported from github.com/Seeed-Studio/Grove_Digital_Light_Sensor -- -- Copyright (c) 2012 seeed technology inc. -- Website : www.seeed.cc -- Author : zhangkun -- Create Time: -- Change Log : 2015-07-21: Ported original code to Lua -- by Marius Schmeding (skybus.io) -- -- MIT License, http://opensource.org/licenses/MIT -- *************************************************************************** local TSL2561_Control = 0x80 local TSL2561_Timing = 0x81 local TSL2561_Interrupt = 0x86 local TSL2561_Channel0L = 0x8C local TSL2561_Channel0H = 0x8D local TSL2561_Channel1L = 0x8E local TSL2561_Channel1H = 0x8F local TSL2561_Address = 0x29 -- device address local LUX_SCALE = 14 -- scale by 2^14 local RATIO_SCALE = 9 -- scale ratio by 2^9 local CH_SCALE = 10 -- scale channel values by 2^10 local CHSCALE_TINT0 = 0x7517 -- 322/11 * 2^CH_SCALE local CHSCALE_TINT1 = 0x0fe7 -- 322/81 * 2^CH_SCALE -- Scale table local S = {} S.K1T = 0x0040 -- 0.125 * 2^RATIO_SCALE S.B1T = 0x01f2 -- 0.0304 * 2^LUX_SCALE S.M1T = 0x01be -- 0.0272 * 2^LUX_SCALE S.K2T = 0x0080 -- 0.250 * 2^RATIO_SCA S.B2T = 0x0214 -- 0.0325 * 2^LUX_SCALE S.M2T = 0x02d1 -- 0.0440 * 2^LUX_SCALE S.K3T = 0x00c0 -- 0.375 * 2^RATIO_SCALE S.B3T = 0x023f -- 0.0351 * 2^LUX_SCALE S.M3T = 0x037b -- 0.0544 * 2^LUX_SCALE S.K4T = 0x0100 -- 0.50 * 2^RATIO_SCALE S.B4T = 0x0270 -- 0.0381 * 2^LUX_SCALE S.M4T = 0x03fe -- 0.0624 * 2^LUX_SCALE S.K5T = 0x0138 -- 0.61 * 2^RATIO_SCALE S.B5T = 0x016f -- 0.0224 * 2^LUX_SCALE S.M5T = 0x01fc -- 0.0310 * 2^LUX_SCALE S.K6T = 0x019a -- 0.80 * 2^RATIO_SCALE S.B6T = 0x00d2 -- 0.0128 * 2^LUX_SCALE S.M6T = 0x00fb -- 0.0153 * 2^LUX_SCALE S.K7T = 0x029a -- 1.3 * 2^RATIO_SCALE S.B7T = 0x0018 -- 0.00146 * 2^LUX_SCALE S.M7T = 0x0012 -- 0.00112 * 2^LUX_SCALE S.K8T = 0x029a -- 1.3 * 2^RATIO_SCALE S.B8T = 0x0000 -- 0.000 * 2^LUX_SCALE S.M8T = 0x0000 -- 0.000 * 2^LUX_SCALE S.K1C = 0x0043 -- 0.130 * 2^RATIO_SCALE S.B1C = 0x0204 -- 0.0315 * 2^LUX_SCALE S.M1C = 0x01ad -- 0.0262 * 2^LUX_SCALE S.K2C = 0x0085 -- 0.260 * 2^RATIO_SCALE S.B2C = 0x0228 -- 0.0337 * 2^LUX_SCALE S.M2C = 0x02c1 -- 0.0430 * 2^LUX_SCALE S.K3C = 0x00c8 -- 0.390 * 2^RATIO_SCALE S.B3C = 0x0253 -- 0.0363 * 2^LUX_SCALE S.M3C = 0x0363 -- 0.0529 * 2^LUX_SCALE S.K4C = 0x010a -- 0.520 * 2^RATIO_SCALE S.B4C = 0x0282 -- 0.0392 * 2^LUX_SCALE S.M4C = 0x03df -- 0.0605 * 2^LUX_SCALE S.K5C = 0x014d -- 0.65 * 2^RATIO_SCALE S.B5C = 0x0177 -- 0.0229 * 2^LUX_SCALE S.M5C = 0x01dd -- 0.0291 * 2^LUX_SCALE S.K6C = 0x019a -- 0.80 * 2^RATIO_SCALE S.B6C = 0x0101 -- 0.0157 * 2^LUX_SCALE S.M6C = 0x0127 -- 0.0180 * 2^LUX_SCALE S.K7C = 0x029a -- 1.3 * 2^RATIO_SCALE S.B7C = 0x0037 -- 0.00338 * 2^LUX_SCALE S.M7C = 0x002b -- 0.00260 * 2^LUX_SCALE S.K8C = 0x029a -- 1.3 * 2^RATIO_SCALE S.B8C = 0x0000 -- 0.000 * 2^LUX_SCALE S.M8C = 0x0000 -- 0.000 * 2^LUX_SCALE local moduleName = ... local M = {} _G[moduleName] = M -- i2c interface ID local id = 0 -- local vars local ch0,ch1,chScale,channel1,channel0,ratio1,b,m,temp,lux = 0 -- Wrapping I2C functions to retain original calls local Wire = {} function Wire.beginTransmission(ADDR) i2c.start(id) i2c.address(id, ADDR, i2c.TRANSMITTER) end function Wire.write(commands) i2c.write(id, commands) end function Wire.endTransmission() i2c.stop(id) end function Wire.requestFrom(ADDR, length) i2c.start(id) i2c.address(id, ADDR,i2c.RECEIVER) c = i2c.read(id, length) i2c.stop(id) return string.byte(c) end local function readRegister(deviceAddress, address) Wire.beginTransmission(deviceAddress) Wire.write(address) -- register to read Wire.endTransmission() value = Wire.requestFrom(deviceAddress, 1) -- read a byte return value end local function writeRegister(deviceAddress, address, val) Wire.beginTransmission(deviceAddress) -- start transmission to device Wire.write(address) -- send register address Wire.write(val) -- send value to write Wire.endTransmission() -- end transmission end function M.getLux() local CH0_LOW=readRegister(TSL2561_Address,TSL2561_Channel0L) local CH0_HIGH=readRegister(TSL2561_Address,TSL2561_Channel0H) --read two bytes from registers 0x0E and 0x0F local CH1_LOW=readRegister(TSL2561_Address,TSL2561_Channel1L) local CH1_HIGH=readRegister(TSL2561_Address,TSL2561_Channel1H) ch0 = bit.bor(bit.lshift(CH0_HIGH,8),CH0_LOW) ch1 = bit.bor(bit.lshift(CH1_HIGH,8),CH1_LOW) end function M.init(sda, scl) i2c.setup(id, sda, scl, i2c.SLOW) writeRegister(TSL2561_Address,TSL2561_Control,0x03) -- POWER UP writeRegister(TSL2561_Address,TSL2561_Timing,0x00) --No High Gain (1x), integration time of 13ms writeRegister(TSL2561_Address,TSL2561_Interrupt,0x00) writeRegister(TSL2561_Address,TSL2561_Control,0x00) -- POWER Down end function M.readVisibleLux() writeRegister(TSL2561_Address,TSL2561_Control,0x03) -- POWER UP tmr.delay(14000) M.getLux() writeRegister(TSL2561_Address,TSL2561_Control,0x00) -- POWER Down if(ch0/ch1 < 2 and ch0 > 4900) then return -1 -- ch0 out of range, but ch1 not. the lux is not valid in this situation. end return M.calculateLux(0, 0, 0) -- T package, no gain, 13ms end function M.calculateLux(iGain, tInt, iType) if tInt == 0 then -- 13.7 msec chScale = CHSCALE_TINT0 elseif tInt == 1 then -- 101 msec chScale = CHSCALE_TINT1 else -- assume no scaling chScale = bit.lshift(1,CH_SCALE) end if (not iGain) then chScale = bit.lshift(chScale,4) end -- scale 1X to 16X -- scale the channel values channel0 = bit.rshift((ch0 * chScale),CH_SCALE) channel1 = bit.rshift((ch1 * chScale),CH_SCALE) ratio1 = 0 if channel0 ~= 0 then ratio1 = bit.lshift(channel1,(RATIO_SCALE+1))/channel0 end -- round the ratio value ratio = bit.rshift((ratio1 + 1),1) if iType == 0 then -- T package if ratio >= 0 and ratio <= S.K1T then b=S.B1T m=S.M1T elseif ratio <= S.K2T then b=S.B2T m=S.M2T elseif ratio <= S.K3T then b=S.B3T m=S.M3T elseif ratio <= S.K4T then b=S.B4T m=S.M4T elseif ratio <= S.K5T then b=S.B5T m=S.M5T elseif ratio <= S.K6T then b=S.B6T m=S.M6T elseif ratio <= S.K7T then b=S.B7T m=S.M7T elseif ratio > S.K8T then b=S.B8T m=S.M8T end elseif iType == 1 then -- CS package if ratio >= 0 and ratio <= S.K1C then b=S.B1C m=S.M1C elseif ratio <= S.K2C then b=S.B2C m=S.M2C elseif ratio <= S.K3C then b=S.B3C m=S.M3C elseif ratio <= S.K4C then b=S.B4C m=S.M4C elseif ratio <= S.K5C then b=S.B5C m=S.M5C elseif ratio <= S.K6C then b=S.B6C m=S.M6C elseif ratio <= S.K7C then b=S.B7C m=S.M7C end end temp=((channel0*b)-(channel1*m)) if temp<0 then temp=0 end temp = temp + bit.lshift(1,(LUX_SCALE-1)) -- strip off fractional portion lux = bit.rshift(temp,LUX_SCALE) return lux end return M