// Platform-dependent functions and includes #include "platform.h" #include "common.h" #include #include #include #include "llimits.h" #include "gpio.h" #include "user_interface.h" #include "driver/gpio16.h" #include "driver/i2c_master.h" #include "driver/spi.h" #include "driver/uart.h" #include "driver/sigma_delta.h" #define INTERRUPT_TYPE_IS_LEVEL(x) ((x) >= GPIO_PIN_INTR_LOLEVEL) #ifdef GPIO_INTERRUPT_ENABLE static platform_task_handle_t gpio_task_handle; static int task_init_handler(void); #ifdef GPIO_INTERRUPT_HOOK_ENABLE struct gpio_hook_entry { platform_hook_function func; uint32_t bits; }; struct gpio_hook { uint32_t all_bits; uint32_t count; struct gpio_hook_entry entry[1]; }; static struct gpio_hook *platform_gpio_hook; #endif #endif static const int uart_bitrates[] = { BIT_RATE_300, BIT_RATE_600, BIT_RATE_1200, BIT_RATE_2400, BIT_RATE_4800, BIT_RATE_9600, BIT_RATE_19200, BIT_RATE_31250, BIT_RATE_38400, BIT_RATE_57600, BIT_RATE_74880, BIT_RATE_115200, BIT_RATE_230400, BIT_RATE_256000, BIT_RATE_460800, BIT_RATE_921600, BIT_RATE_1843200, BIT_RATE_3686400 }; int platform_init () { // Setup the various forward and reverse mappings for the pins get_pin_map(); (void) task_init_handler(); cmn_platform_init(); // All done return PLATFORM_OK; } // **************************************************************************** // KEY_LED functions uint8_t platform_key_led( uint8_t level){ uint8_t temp; gpio16_output_set(1); // set to high first, for reading key low level gpio16_input_conf(); temp = gpio16_input_get(); gpio16_output_conf(); gpio16_output_set(level); return temp; } // **************************************************************************** // GPIO functions /* * Set GPIO mode to output. Optionally in RAM helper because interrupts are dsabled */ static void NO_INTR_CODE set_gpio_no_interrupt(uint8_t pin, uint8_t push_pull) { unsigned pnum = pin_num[pin]; ETS_GPIO_INTR_DISABLE(); #ifdef GPIO_INTERRUPT_ENABLE pin_int_type[pin] = GPIO_PIN_INTR_DISABLE; #endif PIN_FUNC_SELECT(pin_mux[pin], pin_func[pin]); //disable interrupt gpio_pin_intr_state_set(GPIO_ID_PIN(pnum), GPIO_PIN_INTR_DISABLE); //clear interrupt status GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(pnum)); // configure push-pull vs open-drain if (push_pull) { GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum)), GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum))) & (~ GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE))); //disable open drain; } else { GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum)), GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pnum))) | GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_ENABLE)); //enable open drain; } ETS_GPIO_INTR_ENABLE(); } /* * Set GPIO mode to interrupt. Optionally RAM helper because interrupts are dsabled */ #ifdef GPIO_INTERRUPT_ENABLE static void NO_INTR_CODE set_gpio_interrupt(uint8_t pin) { ETS_GPIO_INTR_DISABLE(); PIN_FUNC_SELECT(pin_mux[pin], pin_func[pin]); GPIO_DIS_OUTPUT(pin_num[pin]); gpio_register_set(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])), GPIO_PIN_INT_TYPE_SET(GPIO_PIN_INTR_DISABLE) | GPIO_PIN_PAD_DRIVER_SET(GPIO_PAD_DRIVER_DISABLE) | GPIO_PIN_SOURCE_SET(GPIO_AS_PIN_SOURCE)); ETS_GPIO_INTR_ENABLE(); } #endif int platform_gpio_mode( unsigned pin, unsigned mode, unsigned pull ) { NODE_DBG("Function platform_gpio_mode() is called. pin_mux:%d, func:%d\n", pin_mux[pin], pin_func[pin]); if (pin >= NUM_GPIO) return -1; if(pin == 0){ if(mode==PLATFORM_GPIO_INPUT) gpio16_input_conf(); else gpio16_output_conf(); return 1; } #ifdef LUA_USE_MODULES_PWM platform_pwm_close(pin); // closed from pwm module, if it is used in pwm #endif if (pull == PLATFORM_GPIO_PULLUP) { PIN_PULLUP_EN(pin_mux[pin]); } else { PIN_PULLUP_DIS(pin_mux[pin]); } switch(mode){ case PLATFORM_GPIO_INPUT: GPIO_DIS_OUTPUT(pin_num[pin]); set_gpio_no_interrupt(pin, TRUE); break; case PLATFORM_GPIO_OUTPUT: set_gpio_no_interrupt(pin, TRUE); GPIO_REG_WRITE(GPIO_ENABLE_W1TS_ADDRESS, BIT(pin_num[pin])); break; case PLATFORM_GPIO_OPENDRAIN: set_gpio_no_interrupt(pin, FALSE); GPIO_REG_WRITE(GPIO_ENABLE_W1TS_ADDRESS, BIT(pin_num[pin])); break; #ifdef GPIO_INTERRUPT_ENABLE case PLATFORM_GPIO_INT: set_gpio_interrupt(pin); break; #endif default: break; } return 1; } int platform_gpio_write( unsigned pin, unsigned level ) { // NODE_DBG("Function platform_gpio_write() is called. pin:%d, level:%d\n",GPIO_ID_PIN(pin_num[pin]),level); if (pin >= NUM_GPIO) return -1; if(pin == 0){ gpio16_output_conf(); gpio16_output_set(level); return 1; } GPIO_OUTPUT_SET(GPIO_ID_PIN(pin_num[pin]), level); } int platform_gpio_read( unsigned pin ) { // NODE_DBG("Function platform_gpio_read() is called. pin:%d\n",GPIO_ID_PIN(pin_num[pin])); if (pin >= NUM_GPIO) return -1; if(pin == 0){ // gpio16_input_conf(); return 0x1 & gpio16_input_get(); } // GPIO_DIS_OUTPUT(pin_num[pin]); return 0x1 & GPIO_INPUT_GET(GPIO_ID_PIN(pin_num[pin])); } #ifdef GPIO_INTERRUPT_ENABLE static void ICACHE_RAM_ATTR platform_gpio_intr_dispatcher (void *dummy){ uint32_t j=0; uint32_t gpio_status = GPIO_REG_READ(GPIO_STATUS_ADDRESS); uint32_t now = system_get_time(); UNUSED(dummy); #ifdef GPIO_INTERRUPT_HOOK_ENABLE if (gpio_status & platform_gpio_hook->all_bits) { for (j = 0; j < platform_gpio_hook->count; j++) { if (gpio_status & platform_gpio_hook->entry[j].bits) gpio_status = (platform_gpio_hook->entry[j].func)(gpio_status); } } #endif /* * gpio_status is a bit map where bit 0 is set if unmapped gpio pin 0 (pin3) has * triggered the ISR. bit 1 if unmapped gpio pin 1 (pin10=U0TXD), etc. Since this * is the ISR, it makes sense to optimize this by doing a fast scan of the status * and reverse mapping any set bits. */ for (j = 0; gpio_status>0; j++, gpio_status >>= 1) { if (gpio_status&1) { int i = pin_num_inv[j]; if (pin_int_type[i]) { uint16_t diff = pin_counter[i].seen ^ pin_counter[i].reported; pin_counter[i].seen = 0x7fff & (pin_counter[i].seen + 1); if (INTERRUPT_TYPE_IS_LEVEL(pin_int_type[i])) { //disable interrupt gpio_pin_intr_state_set(GPIO_ID_PIN(j), GPIO_PIN_INTR_DISABLE); } //clear interrupt status GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(j)); if (diff == 0 || diff & 0x8000) { uint32_t level = 0x1 & GPIO_INPUT_GET(GPIO_ID_PIN(j)); if (!platform_post_high (gpio_task_handle, (now << 8) + (i<<1) + level)) { // If we fail to post, then try on the next interrupt pin_counter[i].seen |= 0x8000; } // We re-enable the interrupt when we execute the callback (if level) } } else { // this is an unexpected interrupt so shut it off for now gpio_pin_intr_state_set(GPIO_ID_PIN(j), GPIO_PIN_INTR_DISABLE); GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(j)); } } } } void platform_gpio_init( platform_task_handle_t gpio_task ) { gpio_task_handle = gpio_task; // No error handling but this is called at startup when there is a lot of free RAM platform_gpio_hook = calloc (1, sizeof(*platform_gpio_hook) - sizeof(struct gpio_hook_entry)); ETS_GPIO_INTR_ATTACH(platform_gpio_intr_dispatcher, NULL); } #ifdef GPIO_INTERRUPT_HOOK_ENABLE /* * Register an ISR hook to be called from the GPIO ISR for a given GPIO bitmask. * This routine is only called a few times so has been optimised for size and * the unregister is a special case when the bits are 0. * * Each hook function can only be registered once. If it is re-registered * then the hooked bits are just updated to the new value. */ int platform_gpio_register_intr_hook(uint32_t bits, platform_hook_function hook) { struct gpio_hook *oh = platform_gpio_hook; int i, j, cur = -1; if (!hook) // Cannot register or unregister null hook return 0; // Is the hook already registered? for (i=0; icount; i++) { if (hook == oh->entry[i].func) { cur = i; break; } } // return error status if there is a bits clash if (oh->all_bits & ~(cur < 0 ? 0 : oh->entry[cur].bits) & bits) return 0; // Allocate replacement hook block and return 0 on alloc failure int count = oh->count + (cur < 0 ? 1 : (bits == 0 ? -1 : 0)); struct gpio_hook *nh = malloc (sizeof *oh + (count -1)*sizeof(struct gpio_hook_entry)); if (!oh) return 0; nh->all_bits = 0; nh->count = count; for (i=0, j=0; icount; i++) { if (i == cur && !bits) continue; /* unregister entry is a no-op */ nh->entry[j] = oh->entry[i]; /* copy existing entry */ if (i == cur) nh->entry[j].bits = bits; /* update bits if this is a replacement */ nh->all_bits |= nh->entry[j++].bits; } if (cur < 0) { /* append new hook entry */ nh->entry[j].func = hook; nh->entry[j].bits = bits; nh->all_bits |= bits; } ETS_GPIO_INTR_DISABLE(); platform_gpio_hook = nh; ETS_GPIO_INTR_ENABLE(); free(oh); return 1; } #endif // GPIO_INTERRUPT_HOOK_ENABLE /* * Initialise GPIO interrupt mode. Optionally in RAM because interrupts are disabled */ void NO_INTR_CODE platform_gpio_intr_init( unsigned pin, GPIO_INT_TYPE type ) { if (platform_gpio_exists(pin)) { ETS_GPIO_INTR_DISABLE(); //clear interrupt status GPIO_REG_WRITE(GPIO_STATUS_W1TC_ADDRESS, BIT(pin_num[pin])); pin_int_type[pin] = type; //enable interrupt gpio_pin_intr_state_set(GPIO_ID_PIN(pin_num[pin]), type); ETS_GPIO_INTR_ENABLE(); } } #endif // **************************************************************************** // UART // TODO: Support timeouts. // UartDev is defined and initialized in rom code. extern UartDevice UartDev; uint32_t platform_uart_setup( unsigned id, uint32_t baud, int databits, int parity, int stopbits ) { switch( baud ) { case BIT_RATE_300: case BIT_RATE_600: case BIT_RATE_1200: case BIT_RATE_2400: case BIT_RATE_4800: case BIT_RATE_9600: case BIT_RATE_19200: case BIT_RATE_31250: case BIT_RATE_38400: case BIT_RATE_57600: case BIT_RATE_74880: case BIT_RATE_115200: case BIT_RATE_230400: case BIT_RATE_256000: case BIT_RATE_460800: case BIT_RATE_921600: case BIT_RATE_1843200: case BIT_RATE_3686400: UartDev.baut_rate = baud; break; default: UartDev.baut_rate = BIT_RATE_9600; break; } switch( databits ) { case 5: UartDev.data_bits = FIVE_BITS; break; case 6: UartDev.data_bits = SIX_BITS; break; case 7: UartDev.data_bits = SEVEN_BITS; break; case 8: UartDev.data_bits = EIGHT_BITS; break; default: UartDev.data_bits = EIGHT_BITS; break; } switch (stopbits) { case PLATFORM_UART_STOPBITS_1_5: UartDev.stop_bits = ONE_HALF_STOP_BIT; break; case PLATFORM_UART_STOPBITS_2: UartDev.stop_bits = TWO_STOP_BIT; break; default: UartDev.stop_bits = ONE_STOP_BIT; break; } switch (parity) { case PLATFORM_UART_PARITY_EVEN: UartDev.parity = EVEN_BITS; UartDev.exist_parity = STICK_PARITY_EN; break; case PLATFORM_UART_PARITY_ODD: UartDev.parity = ODD_BITS; UartDev.exist_parity = STICK_PARITY_EN; break; default: UartDev.parity = NONE_BITS; UartDev.exist_parity = STICK_PARITY_DIS; break; } uart_setup(id); return baud; } void platform_uart_get_config(unsigned id, uint32_t *baudp, uint32_t *databitsp, uint32_t *parityp, uint32_t *stopbitsp) { UartConfig config = uart_get_config(id); int i; int offset = config.baut_rate; for (i = 0; i < sizeof(uart_bitrates) / sizeof(uart_bitrates[0]); i++) { int diff = config.baut_rate - uart_bitrates[i]; if (diff < 0) { diff = -diff; } if (diff < offset) { offset = diff; *baudp = uart_bitrates[i]; } } switch( config.data_bits ) { case FIVE_BITS: *databitsp = 5; break; case SIX_BITS: *databitsp = 6; break; case SEVEN_BITS: *databitsp = 7; break; case EIGHT_BITS: default: *databitsp = 8; break; } switch (config.stop_bits) { case ONE_HALF_STOP_BIT: *stopbitsp = PLATFORM_UART_STOPBITS_1_5; break; case TWO_STOP_BIT: *stopbitsp = PLATFORM_UART_STOPBITS_2; break; default: *stopbitsp = PLATFORM_UART_STOPBITS_1; break; } if (config.exist_parity == STICK_PARITY_DIS) { *parityp = PLATFORM_UART_PARITY_NONE; } else if (config.parity == EVEN_BITS) { *parityp = PLATFORM_UART_PARITY_EVEN; } else { *parityp = PLATFORM_UART_PARITY_ODD; } } // if set=1, then alternate serial output pins are used. (15=rx, 13=tx) void platform_uart_alt( int set ) { uart0_alt( set ); return; } // Send: version with and without mux void platform_uart_send( unsigned id, u8 data ) { uart_tx_one_char(id, data); } // **************************************************************************** // PWMs static uint16_t pwms_duty[NUM_PWM] = {0}; void platform_pwm_init() { int i; for(i=0;i= NUM_PWM) return 0; if(!pwm_exist(pin)) return 0; return (uint32_t)pwm_get_freq(pin); } // Set the PWM clock uint32_t platform_pwm_set_clock( unsigned pin, uint32_t clock ) { // NODE_DBG("Function platform_pwm_set_clock() is called.\n"); if( pin >= NUM_PWM) return 0; if(!pwm_exist(pin)) return 0; pwm_set_freq((uint16_t)clock, pin); pwm_start(); return (uint32_t)pwm_get_freq( pin ); } uint32_t platform_pwm_get_duty( unsigned pin ) { // NODE_DBG("Function platform_pwm_get_duty() is called.\n"); if( pin < NUM_PWM){ if(!pwm_exist(pin)) return 0; // return NORMAL_DUTY(pwm_get_duty(pin)); return pwms_duty[pin]; } return 0; } // Set the PWM duty uint32_t platform_pwm_set_duty( unsigned pin, uint32_t duty ) { // NODE_DBG("Function platform_pwm_set_duty() is called.\n"); if ( pin < NUM_PWM) { if(!pwm_exist(pin)) return 0; pwm_set_duty(DUTY(duty), pin); } else { return 0; } pwm_start(); pwms_duty[pin] = NORMAL_DUTY(pwm_get_duty(pin)); return pwms_duty[pin]; } uint32_t platform_pwm_setup( unsigned pin, uint32_t frequency, unsigned duty ) { uint32_t clock; if ( pin < NUM_PWM) { platform_gpio_mode(pin, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT); // disable gpio interrupt first if(!pwm_add(pin)) return 0; // pwm_set_duty(DUTY(duty), pin); pwm_set_duty(0, pin); pwms_duty[pin] = duty; pwm_set_freq((uint16_t)frequency, pin); } else { return 0; } clock = platform_pwm_get_clock( pin ); if (!pwm_start()) { return 0; } return clock; } void platform_pwm_close( unsigned pin ) { // NODE_DBG("Function platform_pwm_stop() is called.\n"); if ( pin < NUM_PWM) { pwm_delete(pin); pwm_start(); } } bool platform_pwm_start( unsigned pin ) { // NODE_DBG("Function platform_pwm_start() is called.\n"); if ( pin < NUM_PWM) { if(!pwm_exist(pin)) return FALSE; pwm_set_duty(DUTY(pwms_duty[pin]), pin); return pwm_start(); } return FALSE; } void platform_pwm_stop( unsigned pin ) { // NODE_DBG("Function platform_pwm_stop() is called.\n"); if ( pin < NUM_PWM) { if(!pwm_exist(pin)) return; pwm_set_duty(0, pin); pwm_start(); } } // ***************************************************************************** // Sigma-Delta platform interface uint8_t platform_sigma_delta_setup( uint8_t pin ) { if (pin < 1 || pin > NUM_GPIO) return 0; sigma_delta_setup(); // set GPIO output mode for this pin platform_gpio_mode( pin, PLATFORM_GPIO_OUTPUT, PLATFORM_GPIO_FLOAT ); platform_gpio_write( pin, PLATFORM_GPIO_LOW ); // enable sigma-delta on this pin GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])), (GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin]))) &(~GPIO_PIN_SOURCE_MASK)) | GPIO_PIN_SOURCE_SET( SIGMA_AS_PIN_SOURCE )); return 1; } uint8_t platform_sigma_delta_close( uint8_t pin ) { if (pin < 1 || pin > NUM_GPIO) return 0; sigma_delta_stop(); // set GPIO input mode for this pin platform_gpio_mode( pin, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP ); // CONNECT GPIO TO PIN PAD GPIO_REG_WRITE(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin])), (GPIO_REG_READ(GPIO_PIN_ADDR(GPIO_ID_PIN(pin_num[pin]))) &(~GPIO_PIN_SOURCE_MASK)) | GPIO_PIN_SOURCE_SET( GPIO_AS_PIN_SOURCE )); return 1; } void platform_sigma_delta_set_pwmduty( uint8_t duty ) { uint8_t target = 0, prescale = 0; target = duty > 128 ? 256 - duty : duty; prescale = target == 0 ? 0 : target-1; //freq = 80000 (khz) /256 /duty_target * (prescale+1) sigma_delta_set_prescale_target( prescale, duty ); } void platform_sigma_delta_set_prescale( uint8_t prescale ) { sigma_delta_set_prescale_target( prescale, -1 ); } void ICACHE_RAM_ATTR platform_sigma_delta_set_target( uint8_t target ) { sigma_delta_set_prescale_target( -1, target ); } // ***************************************************************************** // I2C platform interface uint32_t platform_i2c_setup( unsigned id, uint8_t sda, uint8_t scl, uint32_t speed ){ if (sda >= NUM_GPIO || scl >= NUM_GPIO) return 0; // platform_pwm_close(sda); // platform_pwm_close(scl); // disable gpio interrupt first platform_gpio_mode(sda, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP); // inside this func call platform_pwm_close platform_gpio_mode(scl, PLATFORM_GPIO_INPUT, PLATFORM_GPIO_PULLUP); // disable gpio interrupt first return i2c_master_setup(id, sda, scl, speed); } bool platform_i2c_configured( unsigned id ){ return i2c_master_configured(id); } void platform_i2c_send_start( unsigned id ){ i2c_master_start(id); } void platform_i2c_send_stop( unsigned id ){ i2c_master_stop(id); } int platform_i2c_send_address( unsigned id, uint16_t address, int direction ){ // Convert enum codes to R/w bit value. // If TX == 0 and RX == 1, this test will be removed by the compiler if ( ! ( PLATFORM_I2C_DIRECTION_TRANSMITTER == 0 && PLATFORM_I2C_DIRECTION_RECEIVER == 1 ) ) { direction = ( direction == PLATFORM_I2C_DIRECTION_TRANSMITTER ) ? 0 : 1; } return i2c_master_writeByte(id, (uint8_t) ((address << 1) + (direction == PLATFORM_I2C_DIRECTION_TRANSMITTER ? 0 : 1)) ); } int platform_i2c_send_byte(unsigned id, uint8_t data ){ return i2c_master_writeByte(id, data); } int platform_i2c_recv_byte( unsigned id, int ack ){ return i2c_master_readByte(id, ack); } // ***************************************************************************** // SPI platform interface uint32_t platform_spi_setup( uint8_t id, int mode, unsigned cpol, unsigned cpha, uint32_t clock_div ) { spi_master_init( id, cpol, cpha, clock_div ); // all platform functions assume LSB order for MOSI & MISO buffer spi_mast_byte_order( id, SPI_ORDER_LSB ); return 1; } int platform_spi_send( uint8_t id, uint8_t bitlen, spi_data_type data ) { if (bitlen > 32) return PLATFORM_ERR; spi_mast_transaction( id, 0, 0, bitlen, data, 0, 0, 0 ); return PLATFORM_OK; } spi_data_type platform_spi_send_recv( uint8_t id, uint8_t bitlen, spi_data_type data ) { if (bitlen > 32) return 0; spi_mast_set_mosi( id, 0, bitlen, data ); spi_mast_transaction( id, 0, 0, 0, 0, bitlen, 0, -1 ); return spi_mast_get_miso( id, 0, bitlen ); } int platform_spi_blkwrite( uint8_t id, size_t len, const uint8_t *data ) { while (len > 0) { size_t chunk_len = len > 64 ? 64 : len; spi_mast_blkset( id, chunk_len * 8, data ); spi_mast_transaction( id, 0, 0, 0, 0, chunk_len * 8, 0, 0 ); data = &(data[chunk_len]); len -= chunk_len; } return PLATFORM_OK; } int platform_spi_blkread( uint8_t id, size_t len, uint8_t *data ) { uint8_t mosi_idle[64]; os_memset( (void *)mosi_idle, 0xff, len > 64 ? 64 : len ); while (len > 0 ) { size_t chunk_len = len > 64 ? 64 : len; spi_mast_blkset( id, chunk_len * 8, mosi_idle ); spi_mast_transaction( id, 0, 0, 0, 0, chunk_len * 8, 0, -1 ); spi_mast_blkget( id, chunk_len * 8, data ); data = &(data[chunk_len]); len -= chunk_len; } return PLATFORM_OK; } int platform_spi_transaction( uint8_t id, uint8_t cmd_bitlen, spi_data_type cmd_data, uint8_t addr_bitlen, spi_data_type addr_data, uint16_t mosi_bitlen, uint8_t dummy_bitlen, int16_t miso_bitlen ) { if ((cmd_bitlen > 16) || (addr_bitlen > 32) || (mosi_bitlen > 512) || (dummy_bitlen > 256) || (miso_bitlen > 512)) return PLATFORM_ERR; spi_mast_transaction( id, cmd_bitlen, cmd_data, addr_bitlen, addr_data, mosi_bitlen, dummy_bitlen, miso_bitlen ); return PLATFORM_OK; } // **************************************************************************** // Flash access functions /* * Assumptions: * > toaddr is INTERNAL_FLASH_WRITE_UNIT_SIZE aligned * > size is a multiple of INTERNAL_FLASH_WRITE_UNIT_SIZE */ uint32_t platform_s_flash_write( const void *from, uint32_t toaddr, uint32_t size ) { SpiFlashOpResult r; const uint32_t blkmask = INTERNAL_FLASH_WRITE_UNIT_SIZE - 1; uint32_t *apbuf = NULL; uint32_t fromaddr = (uint32_t)from; if( (fromaddr & blkmask ) || (fromaddr >= INTERNAL_FLASH_MAPPED_ADDRESS)) { apbuf = (uint32_t *)malloc(size); if(!apbuf) return 0; memcpy(apbuf, from, size); } system_soft_wdt_feed (); r = flash_write(toaddr, apbuf?(uint32_t *)apbuf:(uint32_t *)from, size); if(apbuf) free(apbuf); if(SPI_FLASH_RESULT_OK == r) return size; else{ NODE_ERR( "ERROR in flash_write: r=%d at %p\n", r, toaddr); return 0; } } /* * Assumptions: * > fromaddr is INTERNAL_FLASH_READ_UNIT_SIZE aligned * > size is a multiple of INTERNAL_FLASH_READ_UNIT_SIZE */ uint32_t platform_s_flash_read( void *to, uint32_t fromaddr, uint32_t size ) { if (size==0) return 0; SpiFlashOpResult r; system_soft_wdt_feed (); const uint32_t blkmask = (INTERNAL_FLASH_READ_UNIT_SIZE - 1); if( ((uint32_t)to) & blkmask ) { uint32_t size2=size-INTERNAL_FLASH_READ_UNIT_SIZE; uint32_t* to2=(uint32_t*)((((uint32_t)to)&(~blkmask))+INTERNAL_FLASH_READ_UNIT_SIZE); r = flash_read(fromaddr, to2, size2); if(SPI_FLASH_RESULT_OK == r) { memmove(to,to2,size2); // This is overlapped so must be memmove and not memcpy char back[ INTERNAL_FLASH_READ_UNIT_SIZE ] __attribute__ ((aligned(INTERNAL_FLASH_READ_UNIT_SIZE))); r=flash_read(fromaddr+size2,(uint32*)back,INTERNAL_FLASH_READ_UNIT_SIZE); memcpy((uint8_t*)to+size2,back,INTERNAL_FLASH_READ_UNIT_SIZE); } } else r = flash_read(fromaddr, (uint32_t *)to, size); if(SPI_FLASH_RESULT_OK == r) return size; else{ NODE_ERR( "ERROR in flash_read: r=%d at %p\n", r, fromaddr); return 0; } } int platform_flash_erase_sector( uint32_t sector_id ) { NODE_DBG( "flash_erase_sector(%u)\n", sector_id); return flash_erase( sector_id ) == SPI_FLASH_RESULT_OK ? PLATFORM_OK : PLATFORM_ERR; } static uint32_t flash_map_meg_offset (void) { uint32_t cache_ctrl = READ_PERI_REG(CACHE_FLASH_CTRL_REG); if (!(cache_ctrl & CACHE_FLASH_ACTIVE)) return -1; uint32_t m0 = (cache_ctrl & CACHE_FLASH_MAPPED0) ? 0x100000 : 0; uint32_t m1 = (cache_ctrl & CACHE_FLASH_MAPPED1) ? 0x200000 : 0; return m0 + m1; } uint32_t platform_flash_mapped2phys (uint32_t mapped_addr) { uint32_t meg = flash_map_meg_offset(); return (meg&1) ? -1 : mapped_addr - INTERNAL_FLASH_MAPPED_ADDRESS + meg ; } uint32_t platform_flash_phys2mapped (uint32_t phys_addr) { uint32_t meg = flash_map_meg_offset(); return (meg&1) ? -1 : phys_addr + INTERNAL_FLASH_MAPPED_ADDRESS - meg; } uint32_t platform_flash_get_partition (uint32_t part_id, uint32_t *addr) { partition_item_t pt = {0,0,0}; system_partition_get_item(SYSTEM_PARTITION_CUSTOMER_BEGIN + part_id, &pt); if (addr) { *addr = pt.addr; } return pt.type == 0 ? 0 : pt.size; } /* * The Reboot Config Records are stored in the 4K flash page at offset 0x10000 (in * the linker section .irom0.ptable) and is used for configuration changes that * persist across reboots. This page contains a sequence of records, each of which * is word-aligned and comprises a header and body of length 0-64 words. The 4-byte * header comprises a length, a RCR id, and two zero fill bytes. These are written * using flash NAND writing rules, so any unused area (all 0xFF) can be overwritten * by a new record without needing to erase the RCR page. Ditto any existing * record can be marked as deleted by over-writing the header with the id set to * PLATFORM_RCR_DELETED (0x0). Note that the last word is not used additions so a * scan for PLATFORM_RCR_FREE will always terminate. * * The number of updates is extremely low, so it is unlikely (but possible) that * the page might fill with the churn of new RCRs, so in this case the write function * compacts the page by eliminating all deleted records. This does require a flash * sector erase. * * NOTE THAT THIS ALGO ISN'T 100% ROBUST, eg. a powerfail between the erase and the * wite-back will leave the page unitialised; ditto a powerfail between the record * appned and old deletion will leave two records. However this is better than the * general integrity of SPIFFS, for example and the vulnerable window is typically * less than 1 mSec every configuration change. */ extern uint32_t _irom0_text_start[]; #define RCR_WORD(i) (_irom0_text_start[i]) #define WORDSIZE sizeof(uint32_t) #define FLASH_SECTOR_WORDS (INTERNAL_FLASH_SECTOR_SIZE/WORDSIZE) uint32_t platform_rcr_read (uint8_t rec_id, void **rec) { platform_rcr_t *rcr = (platform_rcr_t *) &RCR_WORD(0); uint32_t i = 0; /* * Chain down the RCR page looking for a record that matches the record * ID. If found return the size of the record and optionally its address. */ while (1) { // copy RCR header into RAM to avoid unaligned exceptions platform_rcr_t r = (platform_rcr_t) RCR_WORD(i); if (r.id == rec_id) { if (rec) *rec = &RCR_WORD(i+1); return r.len * WORDSIZE; } else if (r.id == PLATFORM_RCR_FREE) { break; } i += 1 + r.len; } return ~0; } uint32_t platform_rcr_delete (uint8_t rec_id) { void *rec = NULL; platform_rcr_read (rec_id, &rec); if (rec) { uint32_t *pHdr = cast(uint32_t *,rec)-1; platform_rcr_t hdr = {.hdr = *pHdr}; hdr.id = PLATFORM_RCR_DELETED; platform_s_flash_write(&hdr, platform_flash_mapped2phys(cast(uint32_t, pHdr)), WORDSIZE); return 0; } return ~0; } /* * Chain down the RCR page and look for an existing record that matches the record * ID and the first free record. If there is enough room, then append the new * record and mark any previous record as deleted. If the page is full then GC, * erase the page and rewrite with the GCed content. */ #define MAXREC 65 uint32_t platform_rcr_write (uint8_t rec_id, const void *inrec, uint8_t n) { uint32_t nwords = (n+WORDSIZE-1) / WORDSIZE; uint32_t reclen = (nwords+1)*WORDSIZE; uint32_t *prev=NULL, *new = NULL; // make local stack copy of inrec including header and any trailing fill bytes uint32_t rec[MAXREC]; if (nwords >= MAXREC) return ~0; rec[0] = 0; rec[nwords] = 0; ((platform_rcr_t *) rec)->id = rec_id; ((platform_rcr_t *) rec)->len = nwords; memcpy(rec+1, inrec, n); // let memcpy handle 0 and odd byte cases // find previous copy if any and exit if the replacement is the same value uint8_t np = platform_rcr_read (rec_id, (void **) &prev); if (prev && !os_memcmp(prev-1, rec, reclen)) return n; // find next free slot platform_rcr_read (PLATFORM_RCR_FREE, (void **) &new); uint32_t nfree = &RCR_WORD(FLASH_SECTOR_WORDS) - new; // Is there enough room to fit the rec in the RCR page? if (nwords < nfree) { // Note inequality needed to leave at least one all set word uint32_t addr = platform_flash_mapped2phys((uint32_t)&new[-1]); platform_s_flash_write(rec, addr, reclen); if (prev) { // If a previous exists, then overwrite the hdr as DELETED platform_rcr_t rcr = {0}; addr = platform_flash_mapped2phys((uint32_t)&prev[-1]); rcr.id = PLATFORM_RCR_DELETED; rcr.len = np/WORDSIZE; platform_s_flash_write(&rcr, addr, WORDSIZE); } } else { platform_rcr_t *rcr = (platform_rcr_t *) &RCR_WORD(0), newrcr = {0}; uint32_t flash_addr = platform_flash_mapped2phys((uint32_t)&RCR_WORD(0)); uint32_t *buf, i, l, pass; for (pass = 1; pass <= 2; pass++) { for (i = 0, l = 0; i < FLASH_SECTOR_WORDS - nfree; ) { platform_rcr_t r = rcr[i]; // again avoid unaligned exceptions if (r.id == PLATFORM_RCR_FREE) break; if (r.id != PLATFORM_RCR_DELETED && r.id != rec_id) { if (pass == 2) memcpy(buf + l, rcr + i, (r.len + 1)*WORDSIZE); l += r.len + 1; } i += r.len + 1; } if (pass == 2) memcpy(buf + l, rec, reclen); l += nwords + 1; if (pass == 1) buf = malloc(l * WORDSIZE); if (l >= FLASH_SECTOR_WORDS || !buf) return ~0; } platform_flash_erase_sector(flash_addr/INTERNAL_FLASH_SECTOR_SIZE); platform_s_flash_write(buf, flash_addr, l*WORDSIZE); free(buf); } return nwords*WORDSIZE; } void* platform_print_deprecation_note( const char *msg, const char *time_frame) { printf( "Warning, deprecated API! %s. It will be removed %s. See documentation for details.\n", msg, time_frame ); } #define TH_MONIKER 0x68680000 #define TH_MASK 0xFFF80000 #define TH_UNMASK (~TH_MASK) #define TH_SHIFT 2 #define TH_ALLOCATION_BRICK 4 // must be a power of 2 #define TASK_DEFAULT_QUEUE_LEN 8 #define TASK_PRIORITY_MASK 3 #define TASK_PRIORITY_COUNT 3 /* * Private struct to hold the 3 event task queues and the dispatch callbacks */ static struct taskQblock { os_event_t *task_Q[TASK_PRIORITY_COUNT]; platform_task_callback_t *task_func; int task_count; } TQB = {0}; static void platform_task_dispatch (os_event_t *e) { platform_task_handle_t handle = e->sig; if ( (handle & TH_MASK) == TH_MONIKER) { uint16_t entry = (handle & TH_UNMASK) >> TH_SHIFT; uint8_t priority = handle & TASK_PRIORITY_MASK; if ( priority <= PLATFORM_TASK_PRIORITY_HIGH && TQB.task_func && entry < TQB.task_count ){ /* call the registered task handler with the specified parameter and priority */ TQB.task_func[entry](e->par, priority); return; } } /* Invalid signals are ignored */ NODE_DBG ( "Invalid signal issued: %08x", handle); } /* * Initialise the task handle callback for a given priority. */ static int task_init_handler (void) { int p, qlen = TASK_DEFAULT_QUEUE_LEN; for (p = 0; p < TASK_PRIORITY_COUNT; p++){ TQB.task_Q[p] = (os_event_t *) malloc( sizeof(os_event_t)*qlen ); if (TQB.task_Q[p]) { os_memset(TQB.task_Q[p], 0, sizeof(os_event_t)*qlen); system_os_task(platform_task_dispatch, p, TQB.task_Q[p], TASK_DEFAULT_QUEUE_LEN); } else { NODE_DBG ( "Malloc failure in platform_task_init_handler" ); return PLATFORM_ERR; } } } /* * Allocate a task handle in the relevant TCB.task_Q. Note that these Qs are resized * as needed growing in 4 unit bricks. No GC is adopted so handles are permanently * allocated during boot life. This isn't an issue in practice as only a few handles * are created per priority during application init and the more volitile Lua tasks * are allocated in the Lua registery using the luaX interface which is layered on * this mechanism. */ platform_task_handle_t platform_task_get_id (platform_task_callback_t t) { if ( (TQB.task_count & (TH_ALLOCATION_BRICK - 1)) == 0 ) { TQB.task_func = (platform_task_callback_t *) realloc( TQB.task_func, sizeof(platform_task_callback_t) * (TQB.task_count+TH_ALLOCATION_BRICK)); if (!TQB.task_func) { NODE_DBG ( "Malloc failure in platform_task_get_id"); return 0; } os_memset (TQB.task_func+TQB.task_count, 0, sizeof(platform_task_callback_t)*TH_ALLOCATION_BRICK); } TQB.task_func[TQB.task_count++] = t; return TH_MONIKER + ((TQB.task_count-1) << TH_SHIFT); } bool platform_post (uint8 prio, platform_task_handle_t handle, platform_task_param_t par) { return system_os_post(prio, handle | prio, par); }