
This document is originally distributed by AVRfreaks.net, and may be distributed, reproduced, and modified
without restrictions. Updates and additional design notes can be found at: www.AVRfreaks.net

DESIGN NOTE
AUTHOR:
KEYWORDS: #028EXTERNAL SRAM SMALL AVR, XRAM

CHRIS R. MORSE, CHRIS@MORSETECH.NET
Using External SRAM with Small AVR Devices

Introduction When using small AVR devices, internal SRAM is often limited and there are insufficient
I/O pins to interface with an external memory (SRAM) device. This article examines a
few ways one may overcome this limitation and provides a schematic/figure and code
for one such method. The intention is not to provide a full working solution, although one
is provided, but to provide a background of ideas to explore and allow the designer to
choose from more options to create the solution that works best for the application at
hand.

Background Before discussing how to design an application to use external memory, it is helpful to
examine how memory is typically used and accessed in embedded applications.

First, let us examine how memory is used. Most uses can be classified into three types
of data: Operation, configuration, and storage. Operation data consists of items such as
local variables, pointers, and the call stack. Configuration data consists of general
parameters for operation and user or state defined values. This type of data is usually
seen as blocks of fields (structures or “structs” in C) and is often used to initialize opera-
tion data. Storage is usually the input and/or output of the embedded system, for
example: The conversion values of Analog to Digital Converters (ADC).

Second, we shall consider what type of memory addressing is necessary. Without hesi-
tation, most designers would say direct random access is required. However, many
embedded applications can be very effective, more efficient even, using other modes
such as sequential addressing. Even those applications that truly require random
access can often be reasonably accommodated with careful design.

The Challenge of
Interfacing with
External Memory

The challenge to using external memory comes down to basic economics-scarcity.
Microcontrollers have a limited number of I/O pins and memory devices require an
abundance of them, particularly for addressing. By using some of the address circuits
described below it is possible to use external memory with small AVR devices such as
the AT90S2313.

Traditionally, address lines are multiplexed using latches such as the 74HC573 family or
sometimes a Shift Register. An alternate method is to use a Ripple Counter like the
CD4040BC family. A Ripple Counter approach (described below) can address an unlim-
1www.AVRfreaks.net Design Note #028 – Date: 06/02

ited amount of SRAM using only two pins. Table 1 below compares these methods for
I/O pin requirements and addressing speed.

Design Using Ripple
Counters

Hardware The hardware design for using Ripple Counters (also called Ripple Carry Binary
Counters) is straightforward. The Ripple Counter requires a ripple input (AI) and a reset
pin (AR). Both pins are used together by the application to control addressing. The AI
pin increments the address (sequentially) and AR resets it to zero.

One can accommodate more address lines than available in a single Ripple Counter
device by “daisy-chaining” the devices together. To do so, connect the most significant
bit (MSB) of the first device to the input pin of the next device and so on for as many
devices as necessary. Figure 1 below shows this circuit with U3 being incremented by
U2, in effect; this adds an additional decade to the counter circuit. This entire circuit
requires only 13 pins to address, control, and read/write data to the SRAM device. By
comparison, using a Shift Register would require 17 pins and a typical latch circuit would
require at least 21 pins and would be limited to addressing 16 lines (216 = 64KB). For
additional pin savings on either circuit a bi-directional Shift Register could be used for
the data pins however, there is much more overhead in data access using this method.

Firmware/Software No matter what circuit is used, the application should be designed to make optimal use
of the addressing scheme employed. To do this successfully, the data must be parti-
tioned. Operational data should almost always be stored in the fastest, most local
memory, in this case, the AVR internal SRAM. Conversely, configuration and storage
data can usually be moved to external memory. When using sequential addressing,
items accessed frequently should be placed at the lowest addresses.

The example code below illustrates how to access the SRAM using the circuits shown in
Figure 1. In data-logging type applications this is a very effective solution that provides
fast access time and leaves enough device pins to accomplish the purpose of the
application.

Enhancements An enhancement for this scheme could be to make the most significant one or two
address lines separately controlled by dedicated I/O pins, effectively making banks or
pages in the SRAM. Doing so would have two benefits:

1. Reduce the amount of time to access higher addresses and

2. Reduce the amount of code required by using a smaller variable size for the
tRamSize type.

Table 1. Comparison of External Memory Address Interfaces

Interface Method I/O Pin Requirements Address Access Speed

Direct Very high Very fast

Latch High Fast

Shift Register Medium Slow

Ripple Counter Very low Fast (sequential)
Very slow (random)
www.AVRfreaks.net2 Design Note #028 – Date: 06/02

Summary
This article has illustrated a few ways that AVR microcontrollers can interface with external SRAM using very few I/O pins
and not sacrifice much functionality or performance. Hopefully, it has provided some new ideas for interfacing external
memory with small AVR devices.

Figure 1. Interface to External SRAM Using Ripple Counters for Address Lines

Example Code

/**

* File: SRAMlib.c

* Author: Chris Morse, chris@morsetech.net

* Purpose: Interface to JDEC standard

* SRAM chips

**/

#include <io-avr.h>

#include <inttypes.h>

#include <pgmspace.h>

#include <iomacros.h>

//Change this for smaller addresses

typedef unsigned long tRamAddr;

//Stores current address on counters

static tRamAddr glAddr;

//These define how the sram is wired

// and can be in a project header

#define SRAM_DATA_DDR DDRB

#define SRAM_DATA_OUT PORTB

#define SRAM_DATA_IN PINB

#define SRAM_SCS_PORT PORTD

#define SRAM_SCS_PIN 2

#define SRAM_SOE_PORT PORTD

U2

CD4040BC

1

9
7
6
5
3
2
4
13
12
14
15

10

8

16

11

Q12

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11

01

VSS

VDD

RESET

DQ6

ADD6AI

OE

DQ2

WE

DQ1

ADD16

ADD4

VCC

DQ7

ADD11

U3

CD4040BC

1

9
7
6
5
3
2
4
13
12
14
15

10

8

16

11

Q12

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11

01

VSS

VDD

RESET

DQ0

ADD11

DQ4
DQ5DQ4

VCC

ADD2

CS

AI

U1

SRAM

11
10
9
8
7
6
5

27
26
23
25
4

28
3

31
2

13
14
15
17
18
19
20
21

1

16

32

22
24
29

30

12

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16

I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
I/O8

A18

VSS

VCC

CS1
OE
WE

A17

A0

ADD18

ADD8

ADD3

ADD[0..18]

AVR

ADD1

ADD7

DQ0

ADD5

DQ2

ADD18
ADD10

ADD4

C1

0.1uF

ADD12

ADD13

DQ[0..7]

ADD0

ADD5VCC

DQ3

ADD15

AR

ADD9

ADD11

C2
0.1uF

ADD10

ADD9
ADD17

ADD14

ADD8

ADD1
ADD12

C3
0.1uF

DQ1
ADD2

DQ6

ADD13

ADD7
DQ3

DQ5

ADD14

ADD0

ADD16

DQ7
ADD3

ADD17

ADD6

ADD15
www.AVRfreaks.net 3Design Note #028 – Date: 06/02

#define SRAM_SOE_PIN 3

#define SRAM_SWE_PORT PORTD

#define SRAM_SWE_PIN 4

#define SRAM_SAR_PORT PORTD

#define SRAM_SAR_PIN 5

#define SRAM_SAI_PORT PORTD

#define SRAM_SAI_PIN 6

//Macros for SRAM Control

 //Put chip in Write mode

 #define SRAM_SET_WRITE() { \

 sbi(SRAM_SOE_PORT, SRAM_SOE_PIN); \

 cbi(SRAM_SWE_PORT, SRAM_SWE_PIN); \

 SRAM_DATA_DDR = 0xFF; }

 //Commit Write to device

 #define SRAM_COMMIT_WRITE() { \

 sbi(SRAM_SWE_PORT, SRAM_SWE_PIN); \

 cbi(SRAM_SWE_PORT, SRAM_SWE_PIN); }

 //Set to Write mode and output

 #define SRAM_SET_READ() { \

 cbi(SRAM_SOE_PORT, SRAM_SOE_PIN); \

 sbi(SRAM_SWE_PORT, SRAM_SWE_PIN); \

 SRAM_DATA_DDR = 0x00; }

 //Make sure SRAM is in wake mode

 #define SRAM_SELECT() \

 cbi(SRAM_SCS_PORT, SRAM_SCS_PIN);

 //Put the SRAM in standby

 #define SRAM_DESELECT() \

 sbi(SRAM_SCS_PORT, SRAM_SCS_PIN);

 //Reset the address latch

 #define SRAM_ADDR_RESET() { \

 sbi(SRAM_SAR_PORT, SRAM_SAR_PIN); \

 cbi(SRAM_SAI_PORT, SRAM_SAI_PIN); \

 cbi(SRAM_SAR_PORT, SRAM_SAR_PIN); }

 //Increment the address latch

 #define SRAM_ADDR_INCR() { \

 sbi(SRAM_SAI_PORT, SRAM_SAI_PIN); \

 cbi(SRAM_SAI_PORT, SRAM_SAI_PIN); }

//Functions for SRAM Actions

void SRAMsetAddr(const tRamAddr clAddr)

{

www.AVRfreaks.net4 Design Note #028 – Date: 06/02

 tRamAddr iIncUnits;

 //Determine how much to increment

 if(glAddr < clAddr) {

 SRAM_ADDR_RESET();

 iIncUnits = clAddr;

 } else {

 iIncUnits = clAddr - glAddr;

 }

 //Increment the adddress latch

 while(iIncUnits--) {

 SRAM_ADDR_INCR();

 }

 //Store the new adddress

 glAddr = clAddr;

}

void* SRAMreadBuf(void* pbBuf, const tRamAddr clAddr, uint16_t ciSize)

{

 uint8_t* pData = (uint8_t*)pbBuf;

 //Setup the chip

 SRAMsetAddr(clAddr);

 SRAM_SELECT();

 SRAM_SET_READ();

 //Read the data

 while(ciSize > 0) {

 //Copy byte to memory pointer

 *pData = SRAM_DATA_IN;

 SRAM_ADDR_INCR();

 //Increment pointer and decr counter

 pData++;

 ciSize--;

 }

 SRAM_DESELECT();

 return(pbBuf);

}

void SRAMwriteBuf(const tRamAddr clAddr, const void* const cpbBuf, uint16_t
ciSize)

{

 uint8_t* pData = (uint8_t*)cpbBuf;
www.AVRfreaks.net 5Design Note #028 – Date: 06/02

 //Setup the chip

 SRAMsetAddr(clAddr);

 SRAM_SELECT();

 SRAM_SET_WRITE();

 //Write the data

 while(ciSize > 0) {

 //Write data and commit

 SRAM_DATA_OUT = *pData;

 SRAM_COMMIT_WRITE();

 //Increment the address & pointer

 SRAM_ADDR_INCR();

 pData++;

 //Decrement the byte counter

 ciSize--;

 }

 SRAM_DESELECT();

}

www.AVRfreaks.net6 Design Note #028 – Date: 06/02

	Introduction
	Background
	The Challenge of Interfacing with External Memory
	Design Using Ripple Counters
	Hardware
	Firmware/Software
	Enhancements

	Summary
	Example Code

