
J1: a small Forth CPU Core for FPGAs

James Bowman

Willow Garage

Menlo Park, CA

jamesb@willowgarage.com

Abstract—This paper describes a 16-bit Forth CPU core,
intended for FPGAs. The instruction set closely matches the
Forth programming language, simplifying cross-compilation.
Because it has higher throughput than comparable CPU cores,
it can stream uncompressed video over Ethernet using a simple
software loop. The entire system (source Verilog, cross compiler,
and TCP/IP networking code) is published under the BSD
license. The core is less than 200 lines of Verilog, and operates
reliably at 80 MHz in a Xilinx Spartan R©-3E FPGA, delivering
approximately 100 ANS Forth MIPS.

I. INTRODUCTION

The J1 is a small CPU core for use in FPGAs. It is a 16-

bit von Neumann architecture with three basic instruction

formats. The instruction set of the J1 maps very closely to

ANS Forth. The J1 does not have:

• condition registers or a carry flag

• pipelined instruction execution

• 8-bit memory operations

• interrupts or exceptions

• relative branches

• multiply or divide support.

Despite these limitations it has good performance and code

density, and reliably runs a complex program.

II. RELATED WORK

While there have been many CPUs for Forth, three current

designs stand out as options for embedded FPGA cores:
MicroCore [1] is a popular configurable processor core

targeted at FPGAs. It is a dual-stack Harvard architecture,

encodes instructions in 8 bits, and executes one instruction

in two system clock cycles. A call requires two of these

instructions: a push literal followed by a branch to Top-

of-Stack (TOS). A 32-bit implementation with all options

enabled runs at 25 MHz - 12.5 MIPS - in a Xilinx Spartan-

2S FPGA.
b16-small [2], [3] is a 16-bit RISC processor. In addition

to dual stacks, it has an address register A, and a carry flag C.

Instructions are 5 bits each, and are packed 1-3 in each word.

Byte memory access is supported. Instructions execute at a

rate of one per cycle, except memory accesses and literals

which take one extra cycle. The b16 assembly language re-

sembles Chuck Moore’s ColorForth. FPGA implementations

of b16 run at 30 MHz.
eP32 [4] is a 32-bit RISC processor with deep return and

data stacks. It has an address register (X) and status register

(T). Instructions are encoded in six bits, hence each 32-

bit word contains five instructions. Implemented in TSMC’s

0.18µm CMOS standard library the CPU runs at 100 MHz,

providing 100 MIPS if all instructions are short. However a

jump or call instruction causes a stall as the target instruction

is fetched, so these instructions operate at 20 MIPS.

III. THE J1 CPU

A. Architecture

This description follows the convention that the top of

stack is T , the second item on the stack is N , and the top

of the return stack is R.

J1’s internal state consists of:

• a 33 deep × 16-bit data stack

• a 32 deep × 16-bit return stack

• a 13-bit program counter

There is no other internal state: the CPU has no condition

flags, modes or extra registers.

Memory is 16-bits wide and addressed in bytes. Only

aligned 16-bit memory accesses are supported: byte memory

access is implemented in software. Addresses 0-16383 are

RAM, used for code and data. Locations 16384-32767 are

used for memory-mapped I/O.

The 16-bit instruction format (table I) uses an unencoded

hardwired layout, as seen in the Novix NC4016 [5]. Like

many other stack machines, there are five categories of

instructions: literal, jump, conditional jump, call, and ALU.

Literals are 15-bit, zero-extended to 16-bit, and hence use

a single instruction when the number is in the range 0-32767.

To handle numbers in the range 32768-65535, the compiler

follows the immediate instruction with invert. Hence the

majority of immediate loads take one instruction.

All target addresses - for call, jump and conditional branch

- are 13-bit. This limits code size to 8K words, or 16K bytes.

The advantages are twofold. Firstly, instruction decode is

simpler because all three kinds of instructions have the same

format. Secondly, because there are no relative branches,

the cross compiler avoids the problem of range overflow in

resolve.

Conditional branches are often a source of complexity in

CPUs and their associated compiler. J1 has a single instruc-

tion that tests and pops T , and if T = 0 replaces the current

PC with the 13-bit target value. This instruction is the same

as 0branch word found in many Forth implementations,

and is of course sufficient to implement the full set of control

structures.

ALU instruction have multiple fields:

field width action

T ′ 4 ALU op, replaces T , see table II

T → N 1 copy T to N

R → PC 1 copy R to the PC

T → R 1 copy T to R

dstack ± 2 signed increment data stack

rstack ± 2 signed increment return stack

N → [T] 1 RAM write

Table III shows how these fields may be used together

to implement several Forth primitive words. Hence each of

these words map to a single cycle instruction. In fact J1

executes all of the frequent Forth words - as measured by

[6] and [7] - in a single clock cycle.

As in the Novix and SC32 [8] architectures, consecutive

ALU instructions that use different functional units can be

merged into a single instruction. In the J1 this is done by the

assembler. Most importantly, the ; instruction can be merged

with a preceding ALU operation. This trivial optimization,

together with the rewriting of the last call in a word as a

jump, means that the ; (or exit) instruction is free in almost

all cases, and reduces our measured code size by about 7%,

which is in line with the static instruction frequency analysis

in [7].

The CPU’s architecture encourages highly-factored code:

• the call instruction is always single-cycle

• ; and exit are usually free

• the return stack is 32 elements deep

B. Hardware Implementation

Execution speed is a primary goal of the J1, so particular

attention needs to be paid to the critical timing path. This

is the path from RAM read, via instruction fetch to the

computation of the new value of T . Because the ALU

operations (table II) do not depend on any fields in the

instruction, the computation of these values can be done in

parallel with instruction fetch and decode, figure 1.

The data stack D and return stack R are implemented

as small register files; they are not resident in RAM. This

conserves RAM bandwidth, allowing @ and ! to operate in

a single cycle. However, this complicates implementation of

pick and roll.

Our FPGA vendor’s embedded SRAM is dual-ported. The

core issues an instruction read every cycle (port a) and a

memory read from T almost every cycle (port b), using the

latter only in the event of an @ instruction. In case of a

memory write, however, port b does the memory write in the

following cycle. Because of this, @ and ! are single cycle

operations1.

In its current application - an embedded Ethernet camera -

the core interfaces with an Aptina imager and an open source

Ethernet MAC using memory mapped I/O registers. These

registers appear as memory locations in the $4000-$7FFF

range so that their addresses can be loaded in a single literal

instruction.

1the assembler inserts a drop after ! to remove the second stack
parameter

0123456789101112131415

1 value

)

literal

0123456789101112131415

0 0 0 target

)

jump

0123456789101112131415

0 0 1 target

)

conditional jump

0123456789101112131415

0 1 0 target

)

call

0123456789101112131415

0 1 1

R
→

P
C

T ′

T
→

N

T
→

R

N
→

[T
]

rs
ta
ck

±

d
st
ac
k
±

)

ALU

TABLE I: Instruction encoding

code operation
0 T

1 N

2 T + N

3 TandN

4 TorN

5 TxorN

6 ∼ T

7 N = T

8 N < T

9 NrshiftT

10 T − 1
11 R

12 [T]
13 NlshiftT

14 depth

15 Nu<T

TABLE II: ALU operation codes

word T
′

T
→

N

R
→

P
C

T
→

R

d
st
ac
k
±

rs
ta
ck

±

N
→

[T
]

dup T • +1 0
over N • +1 0

invert ∼ T 0 0
+ T + N -1 0

swap N • 0 0
nip T -1 0
drop N -1 0
; T • 0 -1
>r N • -1 +1
r> R • • +1 -1
r@ R • • +1 0
@ [T] 0 0
! N -1 0 •

TABLE III: Encoding of some Forth words.

Fig. 1: The flow of a single instruction execution. ALU operation
proceeds in parallel with instruction fetch and decode. Bus widths
are in bits.

C. System Software

Because the target machine matches Forth so closely. the

cross assembler and compiler are relatively simple. These

tools run under gforth [9]. The compiler generates native

code, sometimes described as subroutine-threaded with inline

code expansion [8].

Almost all of the core words are written in pure Forth, the

exceptions are pick and roll, which must use assembly

code because the stack is not accessible in regular memory.

Much of the core is based on eforth [10].

D. Application Software

The J1 is part of a system which reads video from an

Aptina image sensor and sends it as UDP packets over

Ethernet. The PR2 robot running ROS [11] uses six of these

cameras, two in stereo pairs in the head and one in each arm.

The main program implements a network stack (MAC

interface, Ethernet, IP, ARP, UDP, TCP, DHCP, DNS, HTTP,

NTP, TFTP and our own UDP-based camera control proto-

col), handles I2C, SPI, and RS-232 interfaces, and streams

video data from the image sensor.

The heart of the system is this inner loop, which moves

32 bits of data from the imager to the MAC:

begin

begin MAC_tx_ready @ until

pixel_data @ MAC_tx_0 !

pixel_data @ MAC_tx_1 !

1- dup 0=

until

IV. RESULTS

The J1 performs well in its intended application. This sec-

tion attempts to quantify the improvements in code density

and system performance.

Static analysis of our application gives the following

instruction breakdown:

instruction usage

conditional jump 4%

jump 8%

literal 22%

call 29%

ALU 35%

An earlier version of the system used a popular RISC

soft-core [12] based on the Xilinx MicroBlaze R©architecture,

and was written in C. Hence it is possible to compare code

sizes for some representative components. Also included are

some tentative results from building the same Forth source

on MicroCore.

component MicroBlaze J1 MicroCore

code size (bytes)

I2C 948 132 113

SPI 180 104 105

flash 948 316 370

ARP responder 500 122 –

entire program 16380 6349 –

The J1 code takes about 62% less space than the equivalent

MicroBlaze code. Since the code store allocated to the CPU

is limited to 16 Kbytes, the extra space freed up by switching

to the J1 has allowed us to add features to the camera

program. As can be seen, J1’s code density is similar to

that of the MicroCore, which uses 8-bit instructions.

While J1 is not a general purpose CPU, and its only

performance-critical code section is the video copy loop

shown above, it performs quite well, delivering about 3X the

system performance of the previous C-based system running

on a MicroBlaze-compatible CPU.

V. CONCLUSION

By using a simple Forth CPU we have made a more

capable, better performing and more robust product.

Some directions for our future work: increasing the clock

rate of the J1; using J1 in other robot peripherals; imple-

menting the ROS messaging system on the network stack.

Our source code and documentation are available

at: http://www.ros.org/wiki/wge100_camera_

firmware

VI. ACKNOWLEDGMENTS

I would like to thank Blaise Glassend for the original

implementation of the camera hardware.

REFERENCES

[1] K. Schleisiek, “MicroCore,” in EuroForth, 2001.
[2] B. Paysan. http://www.jwdt.com/˜paysan/b16.html.
[3] B. Paysan, “b16-small – Less is More,” in EuroForth, 2004.

[4] E. Hjrtland and L. Chen, “EP32 - a 32-bit Forth Microprocessor,”
in Canadian Conference on Electrical and Computer Engineering,
pp. 518–521, 2007.

[5] E. Jennings, “The Novix NC4000 Project,” Computer Language,
vol. 2, no. 10, pp. 37–46, 1985.

[6] D. Gregg, M. A. Ertl, and J. Waldron, “The Common Case in Forth
Programs,” in EuroForth, 2001.

[7] P. J. Koopman, Jr., Stack computers: the new wave. New York, NY,
USA: Halsted Press, 1989.

[8] J. Hayes, “SC32: A 32-Bit Forth Engine,” Forth Dimensions, vol. 11,
no. 6, p. 10.

[9] A. Ertl, B. Paysan, J. Wilke, and N. Crook. http://www.jwdt.
com/˜paysan/gforth.html.

[10] B. Muench. http://www.baymoon.com/˜bimu/forth/.
[11] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,

E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot
operating system,” in Proc. of the IEEE Intl. Conf. on Robotics

and Automation (ICRA) Workshop on Open Source Robotics, (Kobe,
Japan), May 2009.

[12] S. Tan. http://www.aeste.my/aemb.

