
quick reference

©2011 gameduino.com

screen
Screen RAM is a grid of 64×64 bytes, each byte is a
single character index. This byte controls the character
image and palette used for that 8×8 pixel cell. The total
size of the background screen is 512×512 pixels, but
only 400×300 pixels are visible. The SCROLL_X and
SCROLL_Y registers control the position of this
400×300 pixel window within the larger screen area.

memory map
Gameduino has 32 kbytes of memory, organized
into different functions. The background section
controls background character graphics. The sprite
section controls the foreground sprite graphics.

sprite control
Gameduino has 256 hardware sprites: 16×16 pixel
images that can appear anywhere on the screen.
Sprites are drawn from back-to-front, so higher-
numbered sprites cover up lower-numbered ones.
Each sprite’s appearance is controlled by a 32-bit
word:

registers
Registers control some simple functions of the Gameduino. Gameduino is little-endian, so 16-bit registers have their lower 8 bits at the lower address in memory.

characters
Characters are 8×8 grids of pixels, defined by the values in the character data and palette RAMs. The character
data RAM holds the 64 pixels of the character image, encoded using two bits per pixel. The hardware uses these
two bits to look up the final color in the character’s 4-entry palette.
For example, a character with a palette of blue, yellow, red and white might appear as shown below. In the left-
hand square, the pixel values 0–3 are shown. In the middle square, these pixel values in binary are listed. In the
right hand column are the hex values, as they appear in memory for this character.

sprite palette select
Each pixel of the sprite image is fetched and looked up in a sprite palette. This palette is a
list of colors. Gameduino gives you several palette options: a 256-color palette, a 16-color
palette and a 4-color palette. Why not always use the 256-color palette? Because using
the smaller palette options lets you squeeze more images into memory. 256 bytes of
sprite image RAM can hold one 16x16 sprite image in 256-color mode, two images in
4-bit mode (with a 16 color palette), or four images in 2-bit mode (4 color palette).

colors
Gameduino stores colors in an ARGB1555 format:

Each color field red (R) green (G) and blue (B) has a
range 0–31.
Gameduino is little-endian, so a color stored in two
bytes stored starting at address is:

The A bit controls transparency. When A=1 the pixel is
transparent and the other fields are ignored.
For sprites, transparent pixels show through the
background layer. For the background layer, transparent
pixels show BG_COLOR.

sprite rotate
Each sprite has a 3-bit ROT field that applies a simple rotation and flip to the
sprite image.

background

0x0000

code
sample:

scroll

0x7FFF

control
registers

0x0FFF
0x1000

0x1FFF
0x2000

0x27FF
0x2800

0x2FFF
0x3000

0x37FF
0x3800

0x3FFF
0x2800

sprites

64x64 character screen

character data
256 characters of 8x8 pixels

character palettes
256 characters of 4 colors

control registers
collision RAM

sprite control
256x4 bytes

sprite palette
4 palettes of 256 colors

sprite images
64 images of 16x16 bytes

X X coordinate, 0-511. 0 is the left edge of the screen, 399 is
the right edge.
Y Y coordinate, 0-511. 0 is the top edge of the screen, 299
is the bottom edge.
IMAGE Spriteimageselect,0-63. Selects which source
image the sprite uses.
PAL Sprite palette select, 4 bits. Controls how pixel data is
turned into color.
ROT Sprite rotate, 3 bits. Rotates a sprite by quarter-turns.
C Collision class, 0 is J, 1 is K.

To hide a sprite park it off the screen by setting its Y
coordinate to 400.
To make a large sprite draw several sprites together in a
grid pattern. For example, four 16x16 sprites can be
arranged to make a single 32x32 sprite.
To spin a sprite use the ROT field to rotate it, and use extra
animation frames for finer rotations.
To animate a sprite you can
• change the IMAGE field
• change the PAL field to do simple color animation
• change the ROT field to apply flips and rotates of 90,
 180 and 270 degrees
• load new data to the source image.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMAGE YC PAL ROT X

SCROLL_X

S
C

R
O

LL
_Y 00 01 01 01

00 01 10 10

01 01 10 10

01 01 01 01

00 01 10 11

00 01 01 01

01 01 01 01

00 01 01 01

01 01 01 01

10 01 01 01

10 01 01 00

10 01 01 01

11 11 11 11

10 01 01 01

10 01 01 01

10 01 01 01

15

1A

5A

55

1B

15

55

15

1

1

0

1

3

1

1

1

55

95

94

95

FF

95

95

95

1

1

1

1

3

1

1

1

1

1

1

1

3

1

1

1

1

2

2

2

3

2

2

2

1

2

2

1

3

1

1

1

1

2

2

1

2

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

0

reset value

0x6d

0x10

0

0

0

0

0

0

0

0

0

0

0

0

0000 (black)

0000 (black)

0000 (black)

0000 (black)

0

0

0

access

r

r

r

r

r/w

r/w

r/w

r/w

r/w

r/w

r/w

r/w

r/w

r/w

r/w

r/w

r/w

r/w

r

r/w

r

name

IDENT

REV

FRAME

VBLANK

SCROLL_X

SCROLL_Y

JK_MODE

SPR_DISABLE

SPR_PAGE

IOMODE

BG_COLOR

SAMPLE_L

SAMPLE_R

SCREENSHOT_Y

PALETTE 16A

PALETTE 16B

PALETTE 4A

PALETTE 4B

COLLISION

VOICES

SCREENSHOT

bytes

1

1

1

1

2

2

1

1

1

1

2

2

2

2

32

32

8

8

256

256

800

address

0x2800

0x2801

0x2802

0x2803

0x2804

0x2806

0x2808

0x280A

0x280B

0x280C

0x280E

0x2810

0x2812

0x281E

0x2840

0x2860

0x2880

0x2888

0x2900

0x2A00

0x2B00

description

Gameduino identification—always reads as 0x6D

Hardware revision number. High 4 bits are major revision, low 4 bits are minor

Frame counter, increments at the end of each displayed frame

Set to 1 during the video blanking period

Horizontal background scrolling register, 0–511

Vertical background scrolling register, 0–511

Sprite collision class mode enable 0–1

Sprite control: 0 enable sprite display, 1 disable sprite display

Sprite page select: 0 display from locations 0x3000–0x33FF, 1 from 0x3400–0x37FF

Pin 2 mode: 0=disconnect, 0x46=flash enable, 0x4A=coprocessor control

Background color

Audio left sample value, 16 bit signed -32768 to +32767

Audio right sample value, 16 bit signed -32768 to +32767

Screenshot line select 0–299

16-color sprite A palette

16-color sprite B palette

4-color sprite A palette

4-color sprite B palette

Collision RAM

Audio voice controls

Screenshot line RAM

8–bit mode
Each byte indexes into 256-color palette, P

 3 2 1 0

0 0

0 1 N AB

1 ABN

P

2–bit mode
Two bits from each byte (N=3 is highest, N=0 is lowest)
index into 4-color palette A (AB=0) or B (AB=1)

4–bit mode
The high (N=1) or low (N=0) 4 bits from each byte
index into 16-color palette A (AB=0) or B (AB=1)

code sample:
palettes

Y flip X flip XY swap

 2 1 0

Y flip flip the image top-to-bottom
X flip flip the image left-to-right
XY swap flip the image diagonally
By using these in combination, the sprite image can be rotated:

code sample: rotation

ROT Y flip X flip XY swap results

7 1 1 1

6 1 1 0

5 1 0 1

4 1 0 0

3 0 1 1

2 0 1 0

1 0 0 1

0 0 0 0

code sample:
bgcolor

sprite collision class
In a game you might have the following rules:
• when the player touches an enemy bomb, the player dies
• when a player’s missile touches an enemy, that enemy dies.
Here is a typical in-game situation:

missile
01 (J)

player
02 (K)player

00 (J)

bomb
03 (K)

Notice that bomb 04 covers both bomb 03 and player 00. In this
situation we’re much more interested that bomb 04 is covering
player 00. For this reason, the hardware has a mode JK_MODE
where it ignores “friendly” collisions. In this mode, each sprite
belongs a collision class J or K. Collision notifications only happen
when a J sprite covers up a K sprite, or when a K sprite covers up
a J sprite.

code sample:
jkcollision

sprite 00 no collision

meaning

sprite 01 no collision

sprite 02 covers some pixels from sprite 01

sprite 03 no collision

sprite 04 covers some pixels from sprite 00

0x2900

address

0x2901

0x2902

0x2903

0x2904

FF

value

FF

01

FF

00

bomb
04 (K)

sprite collision detection
The Gameduino has a special memory area that you can use to
detect when sprites overlap. As it draws the image, Gameduino
keeps track of which pixels cover others, and writes the results
into the collision RAM.

Each byte in the collision RAM corresponds with the same
numbered sprite. If the sprite does not cover another then the
byte’s value is 0xFF. But if the sprite covers any part of another
sprite, then the value is the number of the other sprite.

For example, if sprites 00–03 are arranged like this:

00 01 02

code sample:
collision

sprite 00 did not cover up any other sprite

meaning

sprite 01 covered up some pixels from sprite 00

sprite 02 did not cover up any other sprite

sprite 03 covered some pixels from sprite 02

0x2900

address

0x2901

0x2902

0x2903

FF

value

00

FF

02

03

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RA G B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RA G B

A

G2 G1 G0 B4

7 6 5 4 3 2 1 0

B3 B2 B1 B0

R4 R3 R2 R1 R0 G4 G3

address

address+1

