Gameduino Reference Manual

<<<to-do: add cover image>>>

Copyright © 2011 by Guy Garnett
guysphotos at me dot com

©0Ee

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-
sa/3.0/ or send a letter to: Creative Commons, 171 Second Street,
Suite 300, San Francisco, CA 94105, USA.

DRAFT Gameduino

Reference Manual

Contents
Acknowledgementscccuciiieiiieiiiniiiniiieiiii e ressssensssens 1
INErodUCEION ...ceeeiiiiiiirr e 1
Game Programming with Gameduinocccccereeiiieeiiieeiiiencireeccrenceennenenen. 2
Getting Started 2
HOATAWATC.cooevoereereeerireerisesesssesisessisssesasessassssssssesassssasssesssss s essses s s s assssssssassssssssessnsssanssssssssens 2
DEVEIOPMENE ENVIIONIMIENIL c..cereereeeereseeeetseraseraseesssesasssasssassssssssassssssesssessssssssssssssssssasssssssssssssssssssesssesssssssssssesas 3
Developing a Game 4
Tools and Techniques 5
INEEIAL POWET -UD evreereeeriresernserinsssssssesssesisssessssesassssasssessssssassssssssssassssasssssansssasssssssssansssasssessnsssassssssnsssanss 5
GAMEAUINO PYLNON ULIIIEIOS .vvvrreverserirssresesesssesissssssssssissessssssssssesissessssssssssessssssssssssssessssssssssessssesssssssssessssssssssses 5
CONSETVING ATAUING MEIMIOTY oureveeerireerieserisserissssssssesissesissssssssesasssssssssssssessssssssssessssessssssssssessssessssssssnsessssssssssess 6
Gameduino RESOUICE LIDTATY ..icnsirsssisisssisissssisissssisssssissasssissassssssasssssssssssssassssssassssssasssssssssasssassasssassss 6
Other Applications......cccciiieiiiiniiiiiiiiiiiir s reasresssssassssnnes 7
General-Purpose Display Adapter 7
Industrial Process Control 7
Advanced Gameduino Programming......cccccceeieeerencrencrencrencrencrncencrncenncenes 8
VAT (=0 T T 4 111 1 V-SRI 8
Frame Rate 8
Beam Synchronization 10
DOUDIE BUSOIING oooovvoerireerisserisessissssssssesissssisssessssssissssssssssssssssssssssssssasssssssssssssssisssssssssasssssssssssssssassssssssssansssansess 10
Updating Off-SCreen ODJECLSiirossissssisssssissssssssssssssassssssissssssisssssssssssssssssssssssssssssssssseassssssassiss 11
VOTEICAL BIANKINIG .ovevereerereereeeaserasesiss s eassesass s sesssesssssassssssesssssasssessesssssasssassesssessssssssssssssssssanssassssssesnsssassssnnes 12
ROASEET CRASING.euervtesevrieerinsseisssesissssissssssssssassssissssssssssisssssssssssssssissssssssssasssssssssssssssissssssssssssssssssssssssssassssssssssnsssessess 13
Bitmapped Graphics 15
Hardware Hackingccceeeieiieiiiniieniieeiiencreneienereerenereeenseenssnsssncsasesnnennnes 16
Circuit Board Modificationscccccceiiiimeuiiiiiiiiieiiiiiiiiiiiciiineeeccceeeeee, 16
Gameduino Modifications 16
Joystick Shield Modifications 16
[DTo B N (o YT £Y=1 |l o o) [T ot £ RNt 17
Inputs and Controllers 17
Enclosures and Cases 17
Gameduino Technical Reference..........ccceeiiiirrreniiiiiiineeciiiininneesiinnnene. 18
Hardware Interface........ccuvuuiiiiiiiiiieiiiiiiiiiiiiniirresssnnrresess s 18
Hardware Compatibility 18
SPI Communication 19
LIDTATY SUPPOTE oottt ess s s sessss s e s 20
AILCITNIALE SPI AGUTESS.coonvvrieverissserineserssssesssssessassssssassssssassssssassssessssesssssssssssssssssssssssssssssassssssassssssssassssssssseos 20
[\ =T 0o T VA 1Y/ - T J RN 20
Gameduino Memory Map 21

ii

DRAFT Gameduino Reference Manual

Control Registers 22
SHATEA REGISTOS currivirsirissserisssserisssisssssisssssisssssississsessasssississssssassssssassssssassnsssssanssess 23
VAT Lo 3 0 T o] F- 1V 2PN 28
Scrolling 29
o0 e T o O SO 29
R LA Yol == (U Yor 40 L 11 T B OO 30
Background Color 30
Character Graphics 30
RAM_PIC: PIAYFIEIA PICEUTE evorrvereersserirssrisssessssssissssssssssissssissssssssssasssssssssssssssassssssssssasssssssssssssssassssssssssansssasess 31
RAM_CHR: Playfield CRATACLET SEt......cimiisnsisississismsississssesisssesssssisssssssssssssssisssessasssessansssssasnes 31
RAM_PAL: Playfield CROATACTET PALELLEScceueereerreeriseeernserinsesssesesinsesssssessnsesassssssssessnsssassssssmsssansssssees 32
Sprites 43
N 2 L= 00 1T 4o O OO 43
SPIIte COIlISION DEEECTION ..oevereerereerereeresserisserisssessssesissesssessssssesassessssessssessssssssssessssessssssssnsesssssssssssssnsesssssssssseses 44
Ny 2 L L Te e L= D o e PO OO 45
Ny 2 L oo T L= = N
Color
LOGICAI COIOT erererereereerireeteeriseerisseessssesissesssssesassssissssssssessssssassssssssesassssssesessssssasssessssssasessasesessnessanssssssssansssansees
Hardware Color
OUEPDUL COLOT oo esissesissssas s esassesas s sssss s sesasss s s s s st s
¥ Lo 49
Sound Synthesis Registers 49
VIOTCE COMEIOLcooeeerereereereentseriseerissesssssesissessssessss s sesssss s s ssss s s es s sesssssssssssansessssssssnsesen 49
RING MOAUIATOT c..versevoeerirssrissserissssissssisssesissssissssssssssisssssssssssssssisssassssssssssansssansess 51
Sample Registers 51
0T o Yol =F1 o o 53
Coprocessor Interface 53
COPTOCESSOT CONEIOleorrrorrrrerserisserisssesissesissssssssssissesissssssssesassssassssssssessssssasssssssssssssssassssssssssssssssssessnsssassssssssssans 53
COPTOCESSOT MICTOCOUE. .cuueeerererrreserirserissssissesissesissssssssesassssissssssssessssssassssssssssassssasssesssssassssasssessnsssasssssssssanss 53
Coprocessor COMMUNICALIONS BIOCKocueueeeeeeseeesetrserseeastsssssssissessssassesssesssssasssssssssssasssassessssassssses 53
COPTOCESSOT-ONLY REOGISEOTS ..ovvvrireereeereserirsrisseassesasssassessessssssassesssssasssassssssessssssssesssssssssasssssssassssssssssesssssassssnees 54
J1 Architecture and Programming 56
Forth-Based ASSEMDLY LANGUAGE......ccrocromsirrsnsirrcsssiisisssiisisssississssisissssissssssssssssssssssssssssssssassssssasssssass 58
USING N J1 ASSCINIDICT ..ottt sesssasassssssesssssass s ssssssassess s s sssssssasssasssasesssssassssnses 61
J1 ASSEMDIY LANGUAGE REJCTEIICE. ...cuoreverevrsreiriserssirissssssssesissesissssssssesssssssssssssssesssssssssssssssssssssssssessssssssssses 61
Code Optimization 75
I L ol o Yoo o - 77
Screenshot Feature......ccccvivieiiiiieiiiiiiiiiiiicnr s 78
Screenshot Line Select Register 78
Screenshot Line Buffer 79
(€] Lo T T o 2SRRI 80
Acronyms 80
Time 80

iii

Sketch 1:
Sketch 2:
Sketch 3:
Sketch 4:
Sketch 5:
Sketch 6:
Sketch 7:
Sketch 8:
Sketch 9:

DRAFT Gameduino Reference Manual

Code
Wait for Gameduino [nitialiZation. ... 5
Initialization with Splash SCreen ... 5
Game Loop using GD::waitvblanKk ()eeneemeeesssesessesssessesssessesssessesssesssesnes 13
) o 00 0 VL0 T D22 0) o PP 20
J1 Assembly Program TempPlate.......coemmeneeesneesseesesssessssssssssesssesssessesssesssesses 56
EXample SUDTOULINE ...ttt 73
Example Multiple-Entry SUDTOULINEc.oveeeereeeseereeeerseeseesessessesssessesssessesssesssesnes 73
Incrementing LOOP ..o sssssssssssssssssssssenns 74
Decrementing LOOP .o seessessessessssssesessessesssessessessesssssssssessesssssssssessesns 74

iv

DRAFT Gameduino Reference Manual

Tables
Table 1: 800X600 SVGA VidEO OULPUL.....vveueeerermeerressseesssessesssesssessssssssssssssssesssssssssssssssssssssssans 8
Table 2: Video Frame Rateesssssssssessans 9
Table 3: Vertical BlanKing.......oisssssssssesssesss 12
Table 4: HOSt INtEITace ...t ssssssss s sssssesssssssssssssssnens 18
Table 5: Hardware Compatibility LiStc.oonnenerensniseseesesseessescssessessssssssessesssssssseanes 18
Table 6: Gameduino MemMOTY Mapoeeeneenesssessesssssessesssesssees 21
Table 7: IDENT REZISTET ... ssseses 24
Table 8: REV REZISLET ..cuereereeereesseesessesesssssssssssssssssssss s ssseses 24
Table 9: FRAME REGISTET ... sess 24
Table 10: VBLANK REZISLET ..curiueurereeeeeesssssssssssssesssessessssssssssesseses 24
Table 11: SCROLL_X and SCROLL_Y ReGIStEISccoomummrermesermissessssssssssssssesssessesssssssssssessenns 25
Table 12: JK_MODE REEISTETouerereereereesssessessssssessssssesssssssssessssssssssssssssssssssssssesssssssssssssssssssseses 26
Table 13: J1_RESET REZISTET ... ssssssssssssssssssssssssssssesssssssssssssseess 26
Table 14: SPR_DISABLE REZISTETcouriurerrrirerreesesseessesssssessesssesseses 26
Table 15: SPR_PAGE REZISTET ... sses 27
Table 16: IOMODE REISLET ...cuueueurereesereesssesssesessessssssesssssssessessseses 27
Table 17: BG_COLOR REZISTETccreierercerserssersessesseessessssssesesssesssessssssssssssssssssssssssssssssssssssssseess 27
Table 18: SAMPLE_L and SAMPLE_R ReZIStETS......cuenemiensenesssesssessssesssessesssesssessseseees 27
Table 19: SCREENSHOT_Y REZISTET ... sesssssssssssssssssssssssssessssssessssssssssenss 28
Table 20: SCROLL REISTEIS..cuireeeeeeesssssssssesssssssssessssssssssessseses 29
Table 21: BG_COLOR REZISTETccrerirrereerserseessssessssssessssssessesseses 30
Table 22: RAM_CHR Bitmap Organizationssssssssssssssssssssssssssseees 31
Table 23: CharacCter SETS......eressssssssesses s ssss s sssssssssssssssssssses 32
Table 24: RAM_PAL Palette FOIrMatc.ouemernirsssssrssessens 33
Table 25: RAM_PIC MeMOTIY MaAP ..ccvirreeersernseeseesessssssessssssesssssssssssssssssssssssssssssssssssssssessssssssssesss 34
Table 26: RAM_CHR MEMOTY MaP ...ovrrenrnenrrmsenssssessesssessssseses 35
Table 27: RAM_PAL MEMOTY MaP ...oererreereeeesseessesssessessesssesssessssssssssssssssssessssssssssssssessssseses 39
Table 28: Sprite CONLIol WOTd.......coeeeneenesieseneisssssesssssessesssessses 43
Table 29: Sprite Palette MOAES......coeeerneeeeeeesseeessessessesssesssesssessssssssssssssssssssesssssssessseseees 44
Table 30: SPrite ROTAtION ..ovuueeceeeereesreeesessssessesssssss s ssssse st sssssssssssssssssssssssssssssssssseses 44
Table 31: Sprite Image BitmMapccoeeneeeeeeesseesessessessesssessssssssssssssssssssssssssssesssssssessssseees 45
Table 32: RAM_SPRPAL MEMOTY MaP...onrmmenesrmssessssssesseses 46
Table 33: PALETTE16 MemOTY Mapnsssens 46
Table 34: 16-Color SPrite PaAlEttecnenrerreneeseesessrssessesssesssees 46
Table 35: PALETTE4 MemOTy Map.....osssnens 47
Table 35: 4-Color SPrite Palette ... ssseses 47
Table 36: Palette ENtry FOrmat......ossens 48
Table 37: COLOT SPACE .uveeereereecrresssesssssssssssssssssssssssss s st ssss s sssssssssssssssssnses 48
Table 39: VOICES MeMOTY MaAP ..cvvrmrrirerisssessnens 49
Table 40: SAMPLE_L and SAMPLE_R ReZIStETS.....cumememeneenssssessssesssesssssssssssssseseees 52
Table 38: J1_RESET REZISTETcueureereereeeerseesseeseesesseessesssessessesssesssssssesssssssssssssssssssssssssssssssssssseees 53
Table 39: J1_CODE MEMOTY MaP ..ovurrumeerernmermersssnsesssessssssssssessseses 53
Table 40: COMM MeMOTY MaAP ..ocurrmrrirsessnens 54

DRAFT Gameduino Reference Manual

Table 41: YLINE REGISTET ...vrieeeeeereereesreseessssssessssssessssssesssssssssesssssssssssssssssssssssssssssssssssssesssssssssseses 54
Table 42: FPGA ICAP REZISTEIS...nieeresnnessissinsssnses 55
Table 43: FREQHZ and FREQTICK REZISTETS.....ouuererrreerseessesssessessssssssssesssesssessesssesssesssesseees 55
Table 44: P2 [/0 REGISTETS. ... sssssssssss s ssssssssssssssssssssssssssssssesss 55
Table 45: RANDOM REGISETcnrereeeeessssssessssssessssssessssssssssesseses 56
Table 46: CLOCK REGISTETviuirerrersirsersessssssesssssssssss s ss 56
Table 47: FLASH SPI REGISTEL'Sccuveureereeeerseesseessessesseessessssssessesssess 56
Table 48: J1 Assembly Language Summary ... 59
Table 49: J1 ASSEMDIET DIr€CHIVES ... serssesesse st ssessessesssssssssessssssssssssssssssessssssaneanes 61
Table 50: J1 Literal INSTIUCLIONS ... ssessesssssssssssesssssssssssssssssssssssaseans 62
Table 51: J1 ANS FOrth INStrUCLIONS. ...ttt ssesse et sssssesses s ssssessessesssssssaseanes 63
Table 52: J1 Additional INStIUCLIONS ... sssessesessss s ssessessessssssaseases 66
Table 53: J1 Multi-Word INStrUCtiONS ...ttt ssesessessssssssessesssssssssssssessssssaseanes 66
Table 54: J1 Merged INStrUCIONS ..o 67
Table 55: J1 Assembler FIOW CONLIOL ...ttt sssssessessssssssssssessessssssaseanes 71
Table 56: J1 Microcode INSTIUCLIONSvveennereercisessesessessssssesessessessssssssessssssssssessessssssssssseans 77
Table 57: ALU OPeration COAESommeeenesseessesssssssssssssesseses 78
Table 58: Data Stack AdJUSTMENT ... ssesenes 78
Table 59: Return Stack AdjUSEMENT........occneneemeenerseeseesessesesssesssesssssssssssssssssesssessssssssssssssssseses 78
Table 60: SCREENSHOT_Y REZISTEToueerirreresseessesssssesesssessseses 78
Table 61: SCREENSHOT MEMOTY MaP ...ccnenirmeenerssesessssssessssssessseses 79

vi

DRAFT Gameduino Reference Manual

Figures
Figure 1: Video DiSPlay LaYErS ... rimemisssssessses 27
FIGUIE 2: SCTOIING c.oveeieeeeeieerersesseessess et ssessses s ss s s s s s sssssssesanes 27
Figure 3: SCroll WraparoUnd......ceessessesssssssssses 28
Figure 4: J1 Logical ArCRITECTUTE ...t sssessessssssssssssssssssssesssssssesanes 56

vii

DRAFT Gameduino Reference Manual

Resources
ReSOUICE 1: HATAWATIE SOUICES .o reessssssessssssssssesassssssssssassssssssssassssssssssassssssssssasassssssneass
Resource 2: Software DOWNI0Ad LINKS ..o sesesssssssesessssssssesessssssssessssssssssesessssssssesenes

viii

DRAFT Gameduino Reference Manual

8-Bit Gaming with Arduino and Gameduino

Acknowledgements

James Bowman created the Gameduino, and without his help, input, and corrections
this document would not exist. Any valuable information in this manual ultimately
comes from James, and any errors that were introduced in the process are mine.

The members of the Gameduino-Beta mailing list, particularly Colin Dooley
provided valuable feedback and encouragement based on initial drafts of this
manual.

Introduction

Modern microcontrollers, like the Atmel AVR processors that power the open-
source Arduino boards, are at least as powerful as the 8-bit CPUs that powered
arcade video games in the “golden age” of the 1980’s. For example, the Zilog Z80
was an advanced 8-bit CPU that also featured limited 16-bit instructions. The Z80
ran at speeds of up to a million instructions per second, and powered classic games
such as Pac Man, Donkey Kong, and Galaxian. By comparison, the ATmega328 that
is at the heart of the Arduino Uno executes up to 16 million 8-bit instructions per
second.

The Gameduino is an Arduino shield that provides VGA video and stereo audio
output suitable for “classic” video gaming using custom FPGA hardware. Unlike
other Arduino-based video game projects, the Gameduino provides extensive
hardware support for foreground and background color graphics, collision
detection, and sound generation. The Gameduino uses a simple SPI interface so it is
adaptable to many different microcontrollers, and is powerful and flexible enough
that it can be used for significant non-game applications.

DRAFT Gameduino Reference Manual

Game Programming with Gameduino

Getting Started

Hardware

To do anything useful with a Gameduino, you will need a compatible
microcontroller, a Gameduino board, as well as a monitor, speakers, and some sort
of game controller or other input device. If you want to get started with the example
code and sketches in this book, in addition to your computer, you will need:

* An Arduino Uno or Mega2560

e A Gameduino shield, and

* A SparkFun joystick shield; plus

* Speakers or headphones for sound output, and

* A monitor that supports 800x600 @ 72Hz and an analog VGA input.
The Hardware Sources text box below suggests some places where you can obtain
the components mentioned in this book. Other hardware configurations are
certainly possible - since this is an Arduino project, creative or home-built solutions
are encouraged.

Resource 1: Hardware Sources

Arduino boards: http://arduino.cc/en/Main/Buy

Gameduino shield: To be determined!

Joystick shield kit: http://www.sparkfun.com/products/9760
Bare joystick shield board: http://www.sparkfun.com/products/9490

<<<To-do: reference a section on building your own interface hardware>>>

Hardware Assembly

Arrange the monitor and speakers in your work area so that they are accessible but
out of the way. You will want to place the Arduino and Gameduino hardware
somewhere convenient, so that you can use the joystick board to test your game
sketches while keeping it connected to your computer and the monitor and
speakers. Then put everything together:
1. Check the shields for bent pins, and gently straighten any that are out of
place.
2. Stack the Gameduino shield on top of the Arduino, and push the shield’s pins
into the header. Check for bent pins and make sure the shield is securely
seated.

DRAFT Gameduino Reference Manual

3. Stack the joystick shield on top of the Gameduino, again checking for bent
pins and ensuring that the shield is firmly seated. It would not do to have the
stack come apart while playing your game sketch.

4. Connect the monitor and speakers to the ports on the Gameduino.

Smoke Test

A “smoke test” is the initial test of a new hardware system - the idea is to make sure
that everything works (and doesn’t have any short circuits or other show-stoppers)
before doing anything more complicated. To test your hardware:

1. Power-on the monitor and speakers.

2. Boot up your computer. Once the computer is running,

3. Connect your computer to the Arduino using a USB cable (or optionally, you

can use a wall-power adapter suitable for the Arduino).
4. Press the reset button on the joystick shield.

You should get some output from the Gameduino on the monitor and speakers.
What you get will depend on what is loaded onto the system, either:

* The Asteroids game sketch will start with the “ASTEROIDS” logo scroll, if
your Arduino came with the Gameduino, it should be pre-loaded with this
sketch; or

* Ifyou have a “stock” Arduino that doesn’t (yet) have any Gameduino-aware
sketches loaded onto it, you will get the Gameduino’s boot screen, featuring
the Gameduino logo and start-up sound.

If you don’t get output from the Gameduino, or get something wildly different, try
some of the troubleshooting steps below to isolate the problem.

Troubleshooting

<<<To-do: add troubleshooting information>>>

Development Environment

Now that the hardware is set up, you will also need a development environment
before you can start creating your own video game sketches. The basic Gameduino
development environment consists of:
* A computer running recent versions of either Windows, Mac OS X, or Linux,
* The Arduino integrated development environment (IDE), and
* The Gameduino software development kit (SDK).
Visit the download links listed below to get the software you need.

Resource 2: Software Download Links

Arduino IDE: http://arduino.cc/en/Main/Software
Gameduino SDK: http://excamera.com/sphinx/gameduino/samples/index.html

DRAFT Gameduino Reference Manual

Installation and Set-Up

Once you have all of the pieces, you can set up your development environment. The
exact steps will vary depending on your choice of operating system, but the
following steps should serve to get you started:

1.

2.

Install the Arduino IDE following the instructions that came with the binary
distribution for your platform.

Verify that the Arduino IDE is working correctly by launching the IDE and
selecting an example sketch from the File menu. Do not attempt to compile
or run this example; we are just verifying that the Arduino IDE is working.
Unpack the Gameduino SDK distribution by unzipping the Gameduino.ZIP
archive file. This will create a “Gameduino” directory with multiple files and
subdirectories inside of it. Note the location of the Gameduino directory for
use in step 6 below.

Locate your Arduino sketchbook directory. The default location will vary
depending on your operating system, but should be a subdirectory of your
user or home directory. You can find and change the sketchbook location
using the Preferences option of the Arduino IDE.

If it doesn’t already exist, create a directory called “libraries” inside of the
Arduino sketchbook directory. If the directory already exists, skip this step.

6. Move the Gameduino directory from step 3 into the libraries directory
created in step 5 above.
IDE and SDK Testing

Once everything is installed, you should test the Gameduino development
environment before starting to work on your own sketches. To test the tool chain:
1. Quit the Arduino IDE if it is still running, then launch the Arduino IDE.

Quitting and re-starting the IDE forces it to re-scan the sketchbook and
libraries.

Load a Gameduino demo program: go to the File menu, and using the
submenus pick Examples, Gameduino, 4.Demo, and finally “ball”. The ball
sketch should open in a new window.

Compile the sketch using the Verify button on the Arduino IDE. It should
compile with no errors or warnings.

Upload the sketch to the Arduino and run it, by using the Upload button on
the IDE. After a brief pause, the bouncing-ball demo should be displayed on
the monitor with accompanying audio output on the speakers.

Congratulations! You now have a functioning Gameduino development
environment, and you are ready to start writing your first game sketch.

Developing a Game

<<<to-do: add information as the THUD game is developed>>>

DRAFT Gameduino Reference Manual

Tools and Techniques

Initial Power-Up

Following a hard reset, such as initial power-on, the Gameduino requires a short
amount of time to reboot, load the FPGA configuration, and initialize before it is
ready to accept commands. This isn’t normally an issue when developing code in the
Arduino IDE, since downloading a new sketch or resetting the Arduino doesn’t force
a Gameduino reset. The Gameduino library normally handles this in the GD.begin()
method by making sure that the Gameduino is ready to accept commands before
initializing the board and returning.

If you are not using the library, your sketch will have to handle this manually. It
takes the Gameduino between 175ms and 250ms to complete its power-on
initialization. The Gameduino may ignore or fail to fully respond to SPI commands
that arrive before this time, so sketches may have unpredictable sound and graphic
artifacts until the Arduino is reset. Resetting the Arduino fixes the problem, since
the reset forces the Arduino to re-run its setup() method without forcing a hard
reset of the Gameduino. However, this solution isn’t very practical for final code
that is going to be embedded in a device.

Sketch 1: Wait for Gameduino Initialization

The best solution to the problem is to
ensure that the Gameduino is
responding to commands before
sending instructions to it. Sketch 1:
Wait for Gameduino Initialization

do {

GD.wr (RAM_SPRIMG, OxFF);
} while (GD.rd(RAM_SPRIMG) != OxFF);
GD.wr (RAM_SPRIMG, 0x00);

shows one such approach using GD library functions for brevity and clarity. This
code fragment repeatedly writes a known, non-default value to Gameduino RAM,
until attempting to read the RAM results in the value written - demonstrating that
the Gameduino has accepted and processed both commands.

Another approach is to insert a delay
into the code before attempting to
communicate with the Gameduino. A
delay of at least 250ms will allow the
Gameduino enough time to initialize
and respond to commands; a longer

Sketch 2: Initialization with Splash Screen

void setup() {
delay (2500);
GD.begin();
}

delay will allow the power-on splash screen to display. As shown by, Sketch 2:
Initialization with Splash Screeneven if you are using the Gameduino library,
inserting a delay before calling GD.begin() will allow the splash screen to appear at

power-up.

Gameduino Python Utilities

<<<to-do: add information about the Python utility package>>>

DRAFT Gameduino Reference Manual

Conserving Arduino Memory

<<<to-do: add note about PROGMEM from the cookbook page>>>
<<<to-do: add notes from Gameduino-Beta list about conserving memory>>>

Gameduino Resource Library

<<<to-do: add description of the library and how to access it>>>

DRAFT Gameduino Reference Manual

Other Applications

The Gameduino has a number of powerful non-game applications as a versatile
video adapter for Arduino and potentially other microcontrollers. Since it uses
standard VGA monitors for information output, it is a cost-effective and versatile
display adapter. Compared to most other Arduino output devices, the Gameduino’s
video display can present a lot of information. A Gameduino can present at least ten
times the character information as a typical multi-line LCD display, or almost twice
as many on-screen pixels as a QVGA screen.

General-Purpose Display Adapter

As a general-purpose display adapter, the Gameduino VGA screen can contain 37
lines of 50 characters each, which compares well to a typical serial LCD. Serial LCDs
commonly used with the Arduino display 1 to 4 lines of 8 to 32 characters. The two
devices typically have similar interface requirements: an SPI or serial connection
uses a few Ardino pins. Many LCD controllers will also accept downloadable
character sets, allowing the programmer to define application-specific glyphs.

Unlike serial display adapters, the Gameduino requires more initialization: a
complete character set (even the base ASCII glyphs) must be stored in the host
microcontroller’s program EEPROM and downloaded to the Gameduino before any
data can be output. Most LCD displays include a built-in extended ASCII character
set that can be used immediately.

Sprite graphics can be used to implement cursors or pointers. Alternatively, the
Gameduino’s sprite memory can be arranged as a high-resolution graphics overlay
that can be addressed at the single pixel level, as described in the section on
Bitmapped Graphics beginning on page 15. This allows an area of arbitrary high-
resolution graphics on an otherwise text-based screen.

Industrial Process Control

The Gameduino can also be used for industrial process-control and systems status
monitoring applications. Because it has a relatively simple, SPI-based host interface,
it can be controlled by nearly any process controller or automation microcontroller
that supports SPI communication. Because the entire character set is customizable
on the Gameduino, specialized symbols specific to the application can be
downloaded and easily displayed.

Character graphics in combination with the Gameduino’s sprite graphics can be
used to implement gauges and pointers, and provide a unique way of presenting
information in an easy-to-understand visual format. For example, a bar graph scale
can be built from a small number (3 or 4) of characters, and a sprite can be used as
an indicator to visually represent the measurement value.

<<<to-do: insert screenshot and example sketch showing gauges>>>

DRAFT Gameduino Reference Manual

Advanced Gameduino Programming

Video Timing
The Gameduino generates a SVGA video signal that conforms to the standards for
72Hz 800x600 video with a 50Mhz dot clock. Table 1: 800x600 SVGA Video Output

summarizes the critical video timing parameters. See http://tinyvga.com/vga-
timing/800x600@72Hz for detailed VESA VGA signal timing information.

Table 1: 800x600 SVGA Video Output
Horizontal Timing

Pixel Clock 50.0Mhz
Frequency 48.077kHz
Resolution 800 pixels 1]
Active Video 16.0us
Blanking 4.8us
Vertical Timing
Frequency 72Hz
Resolution 600 lines [2]
Active Video 12.480ms
Blanking 1.3728ms
Notes:

11 Gameduino doubles pixels for a horizontal resolution of 400 double-size pixels.
[21 Gameduino doubles scan lines for a vertical resolution of 300 double-size pixels.

There are two keys to achieving smooth video game animation: frame rates and
beam synchronization. Frame rate refers to how often we update the screen
information, and beam synchronization dictates when we update that information.

Frame Rate

The Gameduino generates video at 72Hz, or 72 frames per second (fps) no matter
what our game programming is doing. However, we can choose how often our
program updates the screen, resulting in a logical frame rate that differs from the
72fps hardware frame rate. By updating the display every 2nd, 3vd, or 4th frame,
Gameduino software can generate lower-frequency displays. The lower display
frequencies allow the game program more computation time between updates, and
also reduce the amount of information that has to be transferred each second.

Video displays depend on persistence of vision to smooth out the flicker between
different frames. The point where individual frames smooth out varies between
person to person, changes with different lighting conditions, and can also depend on
the speed of the game or animation. A higher frame rate means more frequent
(faster) updates mean that on-screen objects appear to move smoothly. A low frame
rate makes on-screen objects appear to flicker or jerk across the screen. An
inconsistent or variable frame rate may make things appear to stutter or move
erratically. The point where things appear to be smooth is usually somewhere

DRAFT Gameduino Reference Manual

between 30fps and 60fps, but depends greatly on both the content of the screen and
the viewer. For example, movie theaters use a 24fps frame rate for most cinematic
releases, but still achieve the illusion of smooth continuous motion.

The Gameduino’s 72fps hardware video generation is comfortably above this visual
limit. Games that can run at this rate should be smooth and flicker-free, so most
game sketches should strive for this goal. Software may achieve higher update
frequencies, but the hardware that generates the VGA output signal only updates the
screen 72 times per second.

A 36fps frame rate, or updates every other frame, is still fast enough to appear
smooth under many conditions. Fast-moving objects (like a projectile) or high-
contrast items (like white stars on a black background) may appear to flicker or
stutter for some viewers. This rate is often a good compromise, since it allows twice
the computation time between frames but is still smooth.

The 24fps frame rate is the same as movie projectors, and is the slowest rate that
can appear smooth to most viewers. Objectionable flicker, jitter, or other visual
artifacts may be apparent under some lighting conditions, on fast-moving objects, or
when there is high contrast between sequential frames.

Frame rates of 18fps will appear to flicker, stutter, or have noticeable visual artifacts
to most viewers. However, this frame rate allows for plenty of computation time
between frames, and may be suitable for certain kinds of games, particularly
strategic games that don’t feature fast-moving action.

Some kinds of games can benefit from selective updates: fast-moving or high
contrast portions of the display should be updated more frequently, while other
items are updated less often. For example, a space game might update a scrolling
background at 72fps, but could use a 36fps frame rate for sprite animations to save
memory and processor time.

The main reason for choosing a logical frame rate lower than 72fps is to allow
programs that require extensive computation between frames to complete their
work and update the screen. The table below shows how much time is available.

Table 2: Video Frame Rate

Rate D D e Arduino SPI J1
72 fps 1 0 13.88ms 222,222 13,888 694,444
36 fps 2 1 27.77ms 444,444 27,777 1,388,888
24 fps 3 2 41.66ms 666,666 41,666 2,083,333
18 fps 4 3 55.55ms 888,888 55,555 2,777,777

Rate: Logical frame rate, in frames per second (fps).
Div: Frame rate divisor. Logical frame rate = 72fps hardware frame rate + Div.
Skip: Number of frames skipped between updates.

DRAFT Gameduino Reference Manual

Time: Elapsed time between updates, in milliseconds (ms; 1ms = 1x10-3 seconds).

Arduino: Number of instruction cycles between updates assuming a 16Mhz ATmega8
processor. Some AVR instructions take more than one cycle.

SPI: Number of SPI byte transfers between updates assuming a 16Mhz SPI bus clock.
The Gameduino SPI interface requires two address bytes to set up a transfer, plus
one byte per data byte read or written to Gameduino memory.

J1: Number of instruction cycles between updates for the Gameduino’s J1 coprocessor.
Most coprocessor instructions take one cycle, although memory read and write
instructions take two cycles.

Beam Synchronization

Although the Gameduino’s double-ported RAM allows programs to update graphics
data without preventing the video generator from fetching data, updating graphics
data that is currently being drawn on the screen can cause tearing or other glitches
in the video output. For example, if we update a sprite’s Y position while it is being
drawn on screen, a few lines of the sprite will appear at the old location, and the rest
will appear at the new location, making the sprite look like it is torn in half.

<<<to-do: insert torn sprite image>>>

The solution is to update objects when they are not being drawn on the screen. This
can be done via double buffering, updating off-screen objects, by waiting for vertical
blanking, and by raster chasing techniques.

Double Buffering

One obvious solution to the problem is to keep two copies (buffers) of everything:
one is used to draw the display while the other is being updated. When the update is
done, the two buffers are swapped and the newly updated copy is used to draw the
next frame of the display. The big drawback to double buffering is that it requires a
lot of memory, and some way of quickly swapping the two buffers. The Gameduino
hardware supports true double buffering for sprite control data, and limited double
buffering for the sprite bitmaps and character picture.

Double buffering for sprites is controlled by the SPR_PAGE register at 0x280B
(10251 decimal). When SPR_PAGE is 0, sprite control data page 0 is on screen: the
data in locations 0x3000 to 0x33FF (12288 to 13311 decimal) is used to generate
the display. When page 0 is being displayed, the sprite control data structures on
page 1 atlocations 0x3400 to 0x37FF (13312 to 14335 decimal) can be updated
without causing visual glitches. Setting SPR_PAGE to 1 reverses the situation: page
1 data is used to draw the screen display, and page 0 can be updated.

To implement sprite double buffering in your sketches, assuming that your sketch is
fast enough to update the sprites every frame:
1. Initialize sprite control data pages 0 and 1 with the same data, defining the
same sprites on each page.
2. Initialize SPR_PAGE to 0.
3. Wait for vertical blanking.

10

DRAFT Gameduino Reference Manual

4. Toggle SPR_PAGE: setitto 1 if it is currently 0, or set it to 0 if it was 1.
Update sprite positions, bitmaps, and other attributes by changing values in
the non-displayed page: if SPR_PAGE is 0, update the sprites starting at
0x3400; if SPR_PAGE is 1 update the sprites starting at 0x3000.

6. Go to Step 3 to draw the next frame.

U

If your game doesn’t use all of the sprite bitmap memory, you can also double buffer
sprite bitmaps. Without using this type of double buffering, the vertical blanking
period is so short that it is difficult to redefine sprite image data in RAM_SPRIMG
before the display is drawn. Because each bitmap is 256 bytes, there is enough time
to update 4 or 5 sprite bitmaps if the SPI bus isn’t used for anything else during
vertical blanking. However, by double buffering sprite bitmaps, changes can be
made during the entire video frame, allowing plenty of time to update 32 bitmaps.
Bitmaps that aren’t currently being used can be changed under program control,
and then the sprite source image data (bits 25-30 of the sprite control data
structure) can be changed to point to the modified bitmap. For example, a given
sprite could use source images 0 and 32. When source image 0 is being used by the
sprite, source image 32 can be updated. The sprite’s data structure can be changed
to swap source image bitmaps during the vertical blanking period, resulting in
glitch-free sprite bitmap animation. This scheme works best when there are few
enough sprites that two bitmaps can be allocated to each sprite. That way, low-
numbered bitmaps (0 to 31) can be updated while high-numbered bitmaps (32 to
63) are on screen, and vice-versa.

Similarly, sketches can redefine the character bitmaps. If the character being
redefined isn’t present on-screen, the bitmap can be updated at any time. The same
low/high scheme can be used with character bitmaps, but unlike sprites, each
character on the display must be changed individually during the vertical blanking
period to animate the bitmap, which severely limits the effectiveness of the
approach.

When designing double-buffering schemes, it is a good idea to maximize SPI data
transfer efficiency by keeping all of the data to be updated in a contiguous block.

For example, updating 32 sprite bitmaps in a single block takes 8194 SPI cycles (2 to
set up the address and 8192 to transfer 32 bitmaps of 256 bytes each). Updating 32
sprite bitmaps individually requires 8256 SPI cycles (32 bitmaps, each of which
requires a 2-byte address followed by 256 data bytes), so keeping the data together
saves 62 SPI cycles.

Updating Off-Screen Objects

The Gameduino has a logical 512x512 pixel display, but can only show a 400x300
pixel window on the monitor. Information that is not currently visible within the
display window can be updated without causing visual glitches. This technique is
frequently used by scrolling-screen video games. Portions of the playfield that are
currently outside of the visible window are updated, and eventually scroll into the

11

DRAFT Gameduino Reference Manual

visible window. The game sketch constantly updates the playfield “ahead” of the
scrolling.

Vertical Blanking

Video display timing is based around the need to scan an electron beam across a
cathode-ray tube. During part of this scan, the beam is turned off and returned to
the top of the screen so that it is be ready to draw a new frame of data. The period
of time that the beam is turned off and being returned to the top of the screen is the
vertical blanking interval. While modern LCD panels don’t use electron beams, the
timing for that vertical blanking interval is still built into the VGA video standard.

Since no video is output during the vertical blanking interval, our game software can
use this time to update the screen without causing visual glitches on the screen. The
vertical blanking interval is nominally 1.3728ms. In a single vertical blanking
interval:

* An Arduino’s ATmega CPU running at 16MHz can execute 21,964 machine
cycles. Many AVR instructions take one cycle, but some take 2, 3, or 4 cycles.

* The Gameduino’s J1 coprocessor can execute 68,640 machine cycles. Almost
all J1 instructions take one cycle, but some (including memory reads and
writes) take 2 cycles.

* The Arduino can use its SPI bus can transfer 1,372 bytes, assuming the
maximum SPI clock speed. SPI data transfers require sending 2 address bytes
to set up a transfer plus 1 byte per data byte read from or written to the
Gameduino.

The work that can be done is summarized in Table 3: Vertical Blanking.

Table 3: Vertical Blanking
Vertical Blanking 1.3728ms

Arduino CPU 21,964 cycles
J1 Coprocessor 68,640 cycles
SPI transfer 1,372 bytes

Although in theory all three types of activities can be going on at once, in practice
there are some limitations. First, the Arduino CPU is responsible for initiating SPI
transactions and keeping the SPI bus busy, so the amount of additional work that it
can get done at the same is limited. Similarly, while the J1 coprocessor can execute
its instructions independently of the Arduino, each SPI read or write operation
steals a machine cycle from the J1, reducing its performance by about 2%. Finally,
because of the way that the Gameduino’s video-composition hardware works, the
actual time where it is safe to update the screen may vary by up to 2% from the
nominal figure. See the discussion under Raster Chasing below for a more
comprehensive discussion.

12

DRAFT Gameduino Reference Manual

Detecting Vertical Blanking

Arduino sketches and coprocessor code can use the VBLANK register to synchronize
their updates to the vertical blanking interval. VBLANK will read 1 when the
Gameduino is generating a vertical blanking signal, or 0 otherwise.

The GD library provides a function, waitvblank() that will wait for VBLANK to go
from O to 1 using a while

loop. The general structure Sketch 3: Game Loop using GD::waitvblank()
of a game sketch that uses

waitvblank() is illustrated }°°p O
in Sketch 3: Game Loop // Code that does game calculations here.
using GD::waitvblank() at waitvblank () ‘
. . . // Code that updates the Gameduino screen here.
the rlght. Using this }
function guarantees that
the Arduino has the

maximum amount of time to update the screen: it waits for VBLANK to change from
0 to 1 before returning. If your sketch calls waitvblank() in the middle of a vertical
blanking interval, it will wait for the next vertical blanking interval, skipping an
entire frame, to ensure that your sketch has the full time available.

While this approach is sufficient for many game sketches, it is somewhat wasteful:
the Arduino can do nothing except respond to interrupts while it is waiting for the
vertical blanking interval to start. On top of that, continuous SPI read cycles used to
repeatedly check VBLANK steal a few memory cycles from the coprocessor, causing
it to run slightly slower. This can be an issue if your coprocessor code depends on
precise timing —for example, if you are also doing raster chasing.

Another way of synchronizing Arduino code with vertical blanking is to have
coprocessor microcode that allows the J1 coprocessor interrupt the Arduino at the
start of the vertical blanking interval. An <<<example sketch>>> is shown at right.
This sketch can be extended by addition additional coprocessor code after the
interrupt is issued that will be executed during vertical blanking.

<<<to-do: insert interrupt sketch>>>

Raster Chasing

Just as the video beam needs to be returned to the top of the screen before starting
each frame, it also needs to be returned to the left side of the screen prior to each
line of video. Horizontal blanking is the period of time that the video signal is
turned off while it is being returned to the left side of the screen. Since there are
hundreds of lines per frame, the horizontal blanking time of 4.8ps is much shorter
than the vertical blanking interval. If the action to be taken is based on the current
line, then the technique is known as “raster chasing”. For example, a program could
change the background color based on the current line.

13

DRAFT Gameduino Reference Manual

However, the Gameduino doesn’t output VGA video directly. Instead, each pixel is
doubled horizontally and vertically. To do this, the Gameduino composes each line
of video into one of two buffers by building it up from the background color,
character graphics, and sprites. Once the line is built up in the buffer, it is output to
the display, and the other buffer is available to compose the next line. The
Gameduino outputs each pixel twice to double their size horizontally, and each line
is output twice to double it vertically. There is a brief pause to switch buffers and
synchronize the timing of the compositor before the Gameduino begins composing
the next line.

So, instead of a standard VGA horizontal retrace, the Gameduino has a small time
window between composing successive lines of the display. During this window, it
is safe to update on-screen information, since no video composition is going on.
Since each line of video can take a different amount of time to composed, based
mainly on the number of sprites present in that line, the size of the window can be
different from line to line: the window is at least 45 J1 cycles long, and can be as long
as 1677 cycles. The time taken depends on the number of sprites that must be
composited onto the line: the minimum time of 45 cycles corresponds to the
maximum of 96 sprites per line.

There is no direct equivalent to the VBLANK register to indicate when it is safe to
perform updates, but there is coprocessor-only register (YLINE, at 0x8000) that
indicates the current horizontal line number. The Gameduino increments YLINE
immediately after the rightmost pixel of a line is composed. J1 programs that wait
for YLINE to change are guaranteed to have at least 45 cycles, and possibly longer,
to make changes to the video data.

YLINE is a coprocessor-only register. There is no equivalent available to the
Arduino that indicates when horizontal blanking is taking place - and not enough
time to take advantage of it even if there were: even a single-byte SPI transfer
requires 180 J1 cycles, so the window may well be closed before the data could be
written. The coprocessor could interrupt the Arduino when a change in YLINE is
detected using a program similar to the one described above for vertical blanking,
but there is so little time available that it would be challenging to write an interrupt
service routine that did anything useful.

The best approach for is to write a coprocessor routine that detects a change in the
YLINE register does the necessary work. There is no indication when video
compositing resumes, so coprocessor programs that update the screen during this
window should do their work quickly. The <<example sketch>> to the right
illustrates raster-chasing techniques that manipulate the BGCOLOR register to
create a sky and ground background effect.

<<<to-do: insert raster-chasing example>>>

14

DRAFT Gameduino Reference Manual

YLINE Validity

When coding]J1 routines that work with YLINE, remember that the value of YLINE is
undefined during the vertical blanking interval. Coprocessor code can count on
YLINE going from 0 to 299 during the visible portion of the display, and a value
greater than 299 during vertical blanking. However, during vertical blanking the
YLINE register may take on unpredictable and arbitrary values above 299. For
example, it may count from 0 to 299 during the visible frame, and then count 300,
301, 302, 303, 482, 483, etc. while the display is blanked for vertical retrace.

Bitmapped Graphics

<<<to-do: describe how to use sprites to make a bitmap graphics field>>>

15

DRAFT Gameduino Reference Manual

Hardware Hacking

Circuit Board Modifications

Gameduino Modifications

The Gameduino board is designed to use Arduino pin 9 as the select (SEL or SS) pin
for SPI communication. However, the Gameduino may need to co-exist with other
hardware that uses pin 9 for its own purposes. It has been designed to enable this
to be changed if needed by cutting a trace on the circuit board and installing a
jumper wire.

Any available digital pin can be used as the new SPI SEL pin, but note that digital
pins 11, 12, and 13 are used by the Gameduino’s SPI interface, and digital pin 2 may
also be in use by some sketches. To reconfigure the Gameduino to use a different
pin for SPI SEL:

1. Break the circuit board trace at location X on the photograph, and

2. Solder a jumper wire from the through-hole at location A to the new SPI SEL
pin; the exact pin will depend on your system’s hardware configuration.

<<<To-do: insert photo here>>>

Joystick Shield Modifications

The SparkFun joystick shield is as close as anything gets to a standard gaming input
device for the Arduino. From the point of view of using it with a Gameduino, it has
one significant drawback: the joystick pushbutton is attached to Arduino digital pin
2. This may be an issue because pin 2 can be used by Gameduino coprocessor code
to interrupt the Arduino, or pin 2 can be used to access the Gameduino’s onboard
Flash memory. Luckily, it is relatively easy to modify the joystick shield to remap
this button to a different input. We recommend remapping the input to pin 7 with
the following procedure:

1. Break the circuit board trace at location X in the photograph, and
2. Solder a jumper wire from location B to Arduino digital pin 7 at location C.

<<<to-do: insert photo here>>>

16

DRAFT Gameduino Reference Manual

Do-It-Yourself Projects

Inputs and Controllers

<<<to-do: information about building your own controller>>>

Enclosures and Cases

<<<to-do: information about building your own box or case>>>

17

DRAFT Gameduino Reference Manual

Gameduino Technical Reference

Hardware Interface

Although designed as an Arduino shield, the hardware is largely self-contained, and
can be interfaced with any microprocessor or computer system that can provide
power and a SPI interface. An additional output from the Gameduino is connected to
Arduino digital pin 2 for use as an interrupt from the Gameduino to the host system.
These connections are summarized in Table 4: Host Interface.

Table 4: Host Interface

\ Arduino Pin | Function

GND Signal Ground

+3.3V Supply Voltage, 3.3VDC

+5V Supply Voltage, 5.0VDC, 23mA
2 Interrupt (optional)

9 SPI SEL or SS

11 SPI MOSI

12 SPI MISO

13 SPI SCK

Hardware Compatibility

The Gameduino is specifically intended for use with the Arduino Uno. Itis
physically and electrically compatible with most Arduino boards such as the
including the Mega 2560, Duemilanove, Mega, and Diecimila. ATmaga168-based
boards like Diecimila and earlier revisions of the Duemilanove may not have enough
Flash memory or Static RAM (SRAM) for many Gameduino sketches presented in
this manual. Arduino-derived designs such as the Freeduino and Seeeduino that
incorporate an ATmega328, ATmegal280, or ATmega2560 should also work with
the Gameduino. Other development boards with Arduino-compatible headers can
also support the Gameduino; some of these like the Netduino, FEZ Domino, or FEZ
Panda incorporate considerably more computational power than the standard
Arduino platform. The status of known host boards for the Gameduino is presented
in Table 5: Hardware Compatibility List.

Table 5: Hardware Compatibility List
ost Boa ompatib ppO

Name Processor Memory Hardware | Software | Active | Note
Arduino Uno 16MHz ATmega328 32/2 Yes Yes Yes
Arduino Mega2560 16MHz ATmaga2560 | 256/8 Yes Yes Yes
Arduino Duemilanove | 16MHz ATmega328 32/2 Yes Yes

Arduino Duemilanove | 16MHz ATmegal68 16/1 Yes Maybe 1
Arduino Diecimila 16MHz ATmegal68 16/1 Yes Maybe 1
Arduino Mega 16MHz ATmegal280 | 128/8 Yes Yes

Freeduino v2.2 16MHz ATmega328 32/2 2
Seeduino v2.2 16MHz ATmega328 32/2 2

18

DRAFT Gameduino Reference Manual

Name Processor Memory Hardware | Software | Active | Note
LeafLabs Maple 72MHz ARM Cortex | 120/20 Yes Yes Yes 4
Netduino 48MHz ARM7 129/60 No 3
Netduino Plus 48MHz ARM7 64/28 No 3
FEZ Domino 72MHz ARM7 148/62 No 3
FEZ Panda 72MHz ARM7 148/62 No 3
FEZ Panda Il 72MHz ARM7 148/62 No 3

Host Board: Name of the host board.
Processor: CPU speed and designation, program (Flash) and read/write (SRAM) memory in kbytes.
Compatibility and Support: Status of the Gameduino on each platform, see below.

Hardware - Physical and electrical compatibility with the Gameduino:

* Yes = Fully compatible, connects to host board as a shield

* Maybe = Can be made to work by modifying boards or running wires

* No =Does not work

* Blank = Not tested, information needed.

Software - Compatibility with source code included in this book:

* Yes = Compatible, full GD library support and all sketches work

* Maybe = Some sketches may not work due to memory or timing constraints,
see notes

* No = Not Arduino source-code compatible, see notes.

¢ Blank = Not tested, information needed

Active - Availability of GD library and active community support:

* Yes = Very active community and supported GD library

* Some = Limited activity but some work is being done, see notes

* 3rd Party = Active development community using a 3rd-party GD library, see
notes

* No = No activity and no library, probably because of incompatibility

¢ Blank = Unknown, information needed.

Note - System-specific compatibility notes:

1. These systems are mechanically and electrically compatible, but limited
program storage and SRAM may prevent many sketches from working.
Untested at this time.

2. Believed to be fully compatible, but untested at this time.

3. Boards based on .Net Micro Framework should be hardware compatible;
untested and no community or library support at this time.

4. Boards based on Arduino/Processing IDE with ARM cross-compiler.
Software is source-code (but not object-code) compatible.

SPI Communication

The Gameduino’s programming interface is a 32-kilobyte address space that is
available to the host computer via an SPI interface. The Gameduino expects data to
be sent MSB first (DORD=0), using SPI Mode 0 for a clock signal that’s low when idle
(DORD=0) and sampled on the rising edge (CPHA=0). While the Gameduino should

19

DRAFT Gameduino Reference Manual

be able to keep pace with an SPI clock up to 16.7MHz, it has only been tested to the
Arduino’s maximum clock speed of 8MHz.

Library Support Sketch 4: SPI Initialization
The Arduino environment includes a #define GAMEDUINO_SS 9
standard library for handling SPI

o pinMode (GAMEDUINO_SS,0UTPUT) ;
communications. Sketch 4: SPI SPI.begin();

Initialization shows the Arduino code to | 5PI.setClockDivider(SPI_CLOCK_DIV2);
t up the SPI librarv to communicat SPI.setBitOrder (MSBFIRST);

Set up the brary to communicate SPI.setDataMode (MODE®) ;

with a Gameduino. The GD library for
Arduino provides convenient wrapper functions around the SPI library for common

Gameduino operations.

Alternate SPI Address

The Gameduino board is designed to use Arduino pin 9 as the
select (SEL or SS) pin for SPI communication. However, the
board has been designed to enable this to be changed if needed;
for example, to co-exist with other hardware that uses pin 9 for
its own purposes. See Circuit Board Modifications

Gameduino Modifications on page 16 in the Hardware Hacking section for detailed
instructions.

Memory Map

These memory maps present the Gameduino address space in ascending order from
lowest address to highest address; the charts show addresses increasing from left to
right and top to bottom. This means that ASCII character strings are presented in the
order that they would be read as English text. For example, the string “HELLO
WORLD” would be written to the upper-left corner of the character picture as:

Addre Byte Offset and Memo onte
(hex) (dec) +0 +1 +2 +3 +4 5 +6 +7 +8 +9 +10

0x0000 0 Ox48 | Ox45 | Ox4C | Ox4C | Ox4F | 0x20 | Ox57 | Ox4F | 0x52 | 0x4C | 0x44
H E L L 0 W 0 R L D

However, when storing 16-bit binary numbers, the Gameduino is a little-endian
device: 16-bit values are stored with the least-significant byte in the lower address.
For example, the 16-bit value 0x2F8B would be stored in the 2-byte BG_COLOR
register starting at 0x280E as:

DO Addre eng

(hex) (dec) (hex; (dec) +0 +1

BG_COLOR | RW | Ox280E | 10254 | 0x2 2 0x8B Ox2F

20

DRAFT Gameduino Reference Manual

Many Gameduino memory locations are bit-mapped, with specific bits or groups of
bits within a word having distinct functions. When mapping a byte or word, the
individual bits are presented in as digits of a number, with the most-significant bit
to the farthest left and the less-significant bits to the right. Individual bits within a
multi-bit field are indicated with subscripts, with zero being the least-significant bit
and higher numbers indicating progressively more significant bits. For example, Bo
is the least-significant bit in field B, while Be is the 7t and most-significant bitin a 7-

bit field.

Gameduino Memory Map

Table 6: Gameduino Memory Map

‘ Symbol Address Length Purpose
0x0000 Character Picture, character-mapped playfield
RAM_PIC RW 4096
- OxOFFF Grid of 64x64 1-byte characters
0x1000 Character Bitmaps, 256 characters
RAM_CHR RW 4096
- Ox1FFF 8x8 pixels, 2 bits per pixel (16 bytes/character)
0x2000 Character Palettes, 256 palettes of 4 colors each
RAM_PAL RW 2048
- Ox27FF ARGB1555 format (2 bytes/color)
IDENT R | ©x2800 1 | Gameduino ID, always reads 0x6D
REV R | 6x2801 1 | Hardware Revision, always reads 0x10
FRAME R | 0x2802 1 | Video Frame Counter
VBLANK R | 0x2803 1 | Vertical Blanking Flag, 1 during vertical blank
0x2804 Scroll X, character picture horizontal scroll
SCROLL_X RW 2
- 0x2805 Scroll offset, 0 to 511 pixels
0x2806 Scroll Y, character picture vertical scroll
SCROLL_Y RW 2
- 0x2807 Scroll offset, 0 to 511 pixels
JK_MODE RW | 0x2808 1 | Sprite J/KMode, 0 to disable, 1 to enable
J1_RESET RW | 0x2809 1 | Coprocessor Reset, 1 to reset and halt, 0 to run
SPR_DISABLE RW | Ox280A 1 | Sprite Disable, 1 to disable sprints, 0 to enable
SPR_PAGE RW | 0x280B 1 | Sprite Page Select, 0 for 0x3000, 1 for 0x3400
IOMODE RW | ©x280C 1| Pin 2 1/0 Mode, 0x00=disable, 0x45=SPI, 0x4A=]1
R | ©x280D 1 | Unused Register for future use, always reads 0
BG COLOR Ry | Ox280E 5 Background Color, for transparent playfield pixels
- 0x280F ARGB1555 format, high (alpha) bit is ignored
0x2810 Audio Sample, left channel
SAMPLE_L RW 2
- 0x2811 16-bit signed audio sample value
0x2812 Audio Sample, right channel
SAMPLE_R RW 2
- 0x2813 16-bit signed audio sample value
Ring Modulator, voice used for modulation, affects
RING_MOD RW | 0x2814 1
- X all lower-numbered voices; 64 (default) to disable.
R | 9x2815 9 Unused Registers, reserved for future use
0x281D Always reads 0
Ox281E Screenshot Line Select, 0-311
SCREENSHOT_Y RW 2
- 0x281F Selects raster line to load into screenshot buffer
R | 0x2820 37 Unused Registers, reserved for future use
0x283F Always reads 0
PALETTEL6A/B | o | 0x2840 64 Sprite Palette 16, 2 palettes (A&B), 16 colors each
RAM_SPRPAL16 Ox287F

ARGB1555 format (2 bytes/color)

21

DRAFT Gameduino Reference Manual

\ Symbol Address Length Purpose
PALETTE4A/B Ry | ©x2880 16 Sprite Palette 4, 2 palettes (A&B), 4 colors each
RAM_SPRPAL4 0x288F ARGB1555 format (2 bytes/color)
COMM Ry | €x2890 48 Coprocessor Communications Block
0x28BF Specific use to be determined by the programmer
0x28C0 64 Unused Address Space
0x28FF Always reads 0
0x2900 Sprite Collision Detection, valid when VBLANK=1
COLLISTON R | ex20FF 236 Spprite number of colliding sprite, FF=no collision
0x2A00 Voice Control, audio synthesis control
VOICES W1 ox2AFF 256 64 voices, 4 bytes/voic};
0x2B0OO Coprocessor Microcode
J1_CODE R ox2BFF 236 123 instructions, 2 bytes/instruction
0x2C00 Screenshot Line Buffer, selected display line data
SCREENSHOT R | exaF1F 800 ARGB1555 format (2 bytes/pixel), alg)hayalways 0
R | Ox2F20 594 Unused Address Space
Ox2FFF Always reads 0
0x3000 Sprite Control, 2 pages of 256 sprites each
RAM_SPR RW | oraopt 2048 4I;)ytes/sprite pag P
RAM_SPRPAL Ry | ©x3800 2048 Sprite Palette 256, 4 palettes of 256 colors each
RAM_SPRPAL256 Ox3FFF ARGB1555 format (2 bytes/color)
0x4000 Sprite Image Data
RAM_SPRING R | ox7FrF 16384 62 images, l‘1;6><16 pixels, 1 byte/pixel
YLINE R | Ox8000 2 | Current Raster Line, 0-299
ICAP O R | 6x8002 2 | FPGA ICAP Port, 8-bit output
0x8004 2 | Unused Address Space, always reads 0
ICAP W | 0x8006 2 | FPGA ICAP Port, 8-bit input and ICAP control bits
0x8008 2 | Unused Address Space, always reads 0
FREQHZ W | Ox800A 2 | Timer Frequency, OHz to 65535Hz
FREQTICK R | 9x800C 2 | Timer Tick, toggles between 0 and 1 at FREQHZ
P2 V RW | Ox800E 2 | Pin 2 Value, O or 1
P2_DIR R | 6x8010 2 | Pin 2 Direction, O=output, 1=input
RANDOM R | 0x8012 2 | 16-bit Random Value, from white-noise generator
CLOCK R | 0x8014 2 | 16-bit Clock Value, 50MHz machine cycles
FLASH_MISO R | 0x8016 2 | Onboard SPI Flash, MISO line
FLASH_MOSI W | 0x8018 2 | Onboard SPI Flash, MOSI line
FLASH_SCK W | 6x801A 2 | Onboard SPI Flash, SCK line
FLASH_SSEL W | 0x801C 2 | Onboard SPI Flash, SSEL line

Blue text indicates unofficial information (e.g. “RAM_SPRPAL4” is an unofficial label for 0x2880)
Lines shaded in grey are coprocessor-only (cannot be accessed by Arduino SPI interface).

Control Registers

The Gameduino is controlled through SPI reads and writes into its address space.
This address space can be classified as memory and registers, where registers are
one-byte or two-byte memory addresses that have specific functions. In contrast,
memory areas are large sections of the address space that have the same function.
For example, the Gameduino ID and hardware revision number are registers, while
playfield image data and character bitmaps are considered memory.

22

DRAFT Gameduino Reference Manual

Shared Registers

The Gameduino has two sets of registers: a group of shared registers at addresses
10240 through 10303 (0x2800 - 0x283F) that is accessible to both the SPI interface
and the J1 coprocessor, and another group starting at 32768 (0x8000) that is only
accessible to the coprocessor. The shared registers are described below, while the
coprocessor-only registers are described in the

23

DRAFT Gameduino Reference Manual

J1 Coprocessor chapter, starting on page 53.

Gameduino ID: IDENT is a single-byte, read-only register is used to identify a
Gameduino when scanning SPI peripherals. If a Gameduino is present, issuing a
read command for address 10240 (0x2800) will produce 109 (0x6D, ASCII “m”).

Table 7: IDENT Register
DO Addre eng O

(hex) (dec) (hexi (dec) | (hex) | (dec)

IDENT R | 0x2800 | 10240 | 0x01 1| 0x6D | 109

Hardware Version: REV is a single-byte, read-only register that contains the major
and minor revision numbers (R and M respectively in a R.M version numbering
scheme) of the Gameduino hardware and on-board firmware. R3-Ro is the major
revision number; M3-My is the minor revision number.

Table 8: REV Register
DO Addre eng onte
(hex) (dec) | (hex) | (dec) (hex) (dec)

REV R | 0x2801 | 10241 | 0x01 1 | R3R2R1Re M3M2MiMe | Rx16 + M

Video Frame Counter: The FRAME register contains a one-byte, read-only count of
video frames generated. The count starts at power-on at 0, counts up to 255, then
resets to 0. At the Gameduino’s 72Hz frame rate, the register wraps around to 0
roughly every 3.56 seconds.

Table 9: FRAME Register
DO Addre eng onte
(hex) (dec) | (hex) | (dec) (hex) (dec)

FRAME R | 0x2802 | 10242 | 0x01 1 | Ox00-0xFF | 0-255

Vertical Blanking Flag: VBLANK is a single-byte, read-only register that is set to 1
during the vertical blanking interval, or 0 otherwise. The waitvblank() method in
the Gameduino library uses this flag to determine when to return. There are 72
vertical blanking intervals per second (one per frame of video generated). Each one
lasts 1.3728ms. See the Video Timing section starting on page 8 for more on vertical
blanking and to avoid visible glitches when updating the screen.

Table 10: VBLANK Register
DO Addre eng 0

(hex) (dec) (hexi (dec)

VBLANK | R | 0x2803 | 10243 | 0x01 1 | XX XXXXX Ve

Vo: Vertical blanking status: 0=not in vertical blanking, 1=vertical blanking.

Screen Scrolling: The Gameduino outputs a 400x300 pixel screen display window
onto a logical 512x512 pixel image. The SCROLL_X and SCROLL_Y registers set the
location of the upper left corner of the visible window relative to the larger logical

image. If the visible window extends off of the right or bottom of the logical image,

24

DRAFT Gameduino Reference Manual

it automatically wraps around to the left or top (respectively) of the logical image.
For more information on screen scrolling, see the explanation of Scrolling that starts

on page 29 below.
Table 11: SCROLL_X and SCROLL_Y Registers
bo Addre eng Byte Offset and Register Conte Defa
(hex) (dec) | (hex) | (dec) +0 +1
SCROLL X | RW | 0x2804 | 10244 | 0x2 2 | 5756555453525150 | X X X X X X X Sg | Ox0000
SCROLL_Y | RW | ©x2406 | 10246 | 0x2 2 | 5756555453525150 | X X X X X X X Ss | Ox0000

X: Unused bit position, ignored; should be 0 for compatibility reasons.
So-Sg: Scroll offset in pixels, 0-511.

Sprite J/K Mode: The JK_MODE register is a one-byte, read/write value that
controls the behavior of the Gameduino’s sprite collision-detection logic. When set
to 0, J/K mode is disabled and collisions are detected between all sprites. Writing a
1 to JK_MODE enables grouped “J/K” collision detection. In this mode, the sprites
are divided into two groups (labeled] and K for convenience), and collisions are
only detected between sprites in different groups. Sprites that belong to the same
group are considered “friendly” with one another and don’t collide. Setting bit 31 of
the sprite control word to 0 or 1 assigns the sprite to the] or K group, respectively.

See the
Table 29: Sprite Palette Modes
\ Palette Mode Po-P3 Selected Mode Pixel \

(bin) | (dec) | (hex) colors | palette | bits
0000 0| Ox0 256 | 8 0 A 0-7
0001 1] 0x1 256 | 8 1 B 0-7
0010 2 | 0x2 256 | 8 2 C 0-7
0011 3] 0x3 256 | 8 3 D 0-7
0100 4 | 0x4 16 | 4 0 A 0-3
0101 5| 0x5 16 | 4 1 B 0-3
0110 6 | Ox6 16 | 4 0 A 4-7
0111 7 | Ox7 16 | 4 1 B 4-7
1000 8 | Ox8 41 2 0 A 0-1
1001 9 | 0x9 41 2 1 B 0-1
1010 10 | OxA 41 2 0 A 2-3
1011 11 | OxB 41 2 1 B 2-3
1100 12 | 0xC 412 0 A 4-5
1101 13 | OxD 41 2 1 B 4-5
1110 14 | OxE 41 2 0 A 6-7
1111 15 | OxF 41 2 1 B 6-7

Palette mode: The selected palette mode number in binary, decimal, and hexadecimal.
Colors: Number of colors and bit depth in selected palette mode.

Palette: The number and letter of the palette selected for the sprite.

Pixel bits: The bit positions of the sprite image used in the selected mode.

Table 30: Sprite Rotation

| Rotation Ro-R; Selected Mode Effect
(bin) | (dec) | (hex) | Yflip | Xflip | XYswap
000 0 | Ox0 0 0 0 None
001 1]0x1 0 0 1 Mirrored left-to-right then rotated 270°
010 2 | ox2 0 1 0 Mirrored left to right
011 3| 6x3 0 1 1 270° clockwise rotation

25

DRAFT Gameduino Reference Manual

100 4 | 0x4 1 0 0 Mirrored left-to-right then rotated 180°
101 5 | x5 1 0 1 90° clockwise rotation

110 6 | 0x6 1 1 0 180° clockwise rotation

111 7 | 0x7 1 1 1 Mirrored left-to-right then rotated 90°

Rotation: The selected rotation number in binary, decimal, and hexadecimal.
Y flip: Flip sprite image in Y direction (top-to-bottom), 0=no, 1=yes.

X flip: Flip sprite image in X direction (left-to-right), 0=no, 1=yes.

XY swap: Swap sprite X and Y axes, 0=no, 1=yes.

Effect: Effect of selected rotation on the sprite image.

Sprite Collision Detection topic on page 44 for more information.

Table 12: JK_MODE Register

Symbol Address \ Length Contents \ Default \
(hex) (dec) | (hex) | (dec)
JK _MODE | RW | 0x2808 | 10248 | 0x01 1 XXXXXXXJo| Ox00

Jo: Sprite] /K mode collision detection: O=disabled (detect all collisions), 1=enabled.

Coprocessor Reset: The J1_RESET is a one-byte, read/write register that allows the
Arduino (or other host microcontroller) to stop and start the J1 coprocessor.
Writing 0x01 to this register halts and resets the coprocessor, while 0x00 releases
the coprocessor. Following a reset, the J1 begins executing code starting at J1_CODE,
0x2B00 (11008 decimal).

Table 13: J1_RESET Register

DO Adare eng onte Defa
(hex) (dec) | (hex) | (dec)
J1 RESET | RW | 0x2809 | 10249 | 0x1 1 [XXXXXXXRo | 0x00

Ro: Coprocessor control: 0=halt and reset, 1=run.

Sprite Disable: SPR_DISABLE is a one-byte, read/write register that controls the
Gameduino’s sprite graphics subsystem. The default of 0 allows sprite graphics to
function normally. When SPR_DISABLE is set to 1, sprite graphics are disabled and
do not appear on screen.

Table 14: SPR_DISABLE Register

bo Addre eng onte De
(hex) (dec) | (hex) | (dec)
SPR_DISABLE | RW | Ox280A | 10250 | Ox1 1 [XXXXXXXDe | 0x00

Do: Sprite graphics disable: O=sprites enabled, 1=sprites disabled.

Sprite Page Select: The SPR_PAGE is a one-byte, read/write register used to
implement double buffering for sprite control data. When SPR_PAGE is 0, the sprite
graphics system uses the sprite control words at 0x3000-0x33FF (12288-13311
decimal) to generate the sprite display. When it is 1, the sprite control words at
0x3400-0x37FF (13312-14335 decimal) are used. See the section on Double
Buffering starting on page 10 for more information and example code.

26

DRAFT Gameduino Reference Manual

Table 15: SPR_PAGE Register

DO Adare eng onte Defa
(hex) (dec) | (hex) | (dec)
SPR_PAGE | RW | 0x280B | 10251 | Ox1 1] XXXXXXXPo | 0x00

Po: Sprite graphics control page: 0=0x3000-0x33FF, 1=0x3400-0x37FF.

Pin 2 I/0 Mode: The IOMODE register is used to assign pin 2 to one of two
functions, or to disable it entirely. The default value of 0x00 causes the Gameduino
to ignore pin 2. When set to 0x46 (decimal 70 or ASCII “F”), pin 2 is connected to
the Gameduino’s onboard SPI flash memory chip as the SEL or SS signal. Finally,
when IOMODE is set to 0x4A (decimal 74 or ASCII “J”), the pin is controlled by the
coprocessor-only P2_V and P2_DIR registers. Other values have no effect.

Table 16: IOMODE Register

DO Addre eng onte Defa
(hex) (dec) | (hex) | (dec)
IOMODE | RW | 0x280C | 10252 | 0x1 1| 0x00, 0x46, or Ox4A | 0x00

IOMODE must be one of the following three values:
* 0x00 (0 decimal, ASCII “NUL”) - Pin 2 is ignored.
* 0x46 (70 decimal, ASCII “F”) - Pin 2 is Gameduino SPI flash memory SEL.
* 0x4A (74 decimal, ASCII “|”) - Pin 2 is controlled by the Gameduino coprocessor.

Background Color: The BG_COLOR register defines a background color that
appears behind all of the other video sources. On power-up, the background color is
the only image displayed, and defaults to 0x0000 (black). The BG_COLOR value is a
standard Gameduino 16-bit color value except that Bit 15, the alpha (A) channel or
transparency bit, is ignored if set.

Table 17: BG_COLOR Register

bo Addre eng Byte Offset and Register Conte Defa
(hex) (dec) | (hex) | (dec) +0 +1
BG COLOR | RW | Ox280E | 10254 | Ox2 2 | G2G1GeB4B3B2B1Be | X R4R3R2R1ReG4G3 | Ox0000

X: Alpha channel color information, ignored.
R4-Ro: Red channel color information, 0-32.
B4-Bo: Green channel color information, 0-32.
B4-Byo: Blue channel color information, 0-32.

Left and Right Audio Samples: The Gameduino has the ability to play back stereo
audio wave data using the SAMPLE_L and SAMPLE_R registers. Each register
accepts a signed 16-bit integer reflecting the sample. The Gameduino updates audio
samples every 64 cycles of it's 50MHz clock, corresponding to an update frequency
of 781.25kHz, so values loaded into these registers are reflected on the audio output
channels within 1.28ps.

Table 18: SAMPLE_L and SAMPLE_R Registers

bo Addre eng Byte Offset and Register Conte Defa
(hex) (dec) | (hex) | (dec) +0 +1
SAMPLE_L | RW | 0x2810 | 10256 | 0x2 2 | LyLelsLalsloliloe | LisLialislizliilielols | Ox0000

27

DRAFT Gameduino Reference Manual

[SCROLL R RW] 0x2812 | 18258 [x2 | 2 | R7ReRsR4R3R2R1Re | RisR14R13R12R11R16R9Rs | 0x0000]
Lo-L1s: Left audio channel sample value, 16-bit signed integer (L1s is the sign bit).
Ro-Ri1s: Right audio channel sample value, 16-bit signed integer (Ris is the sign bit).

Screenshot Line Select: The SCREENSHOT_Y register is used to capture a line of
raster data from the SCREENSHOT buffer at 0x2C00 (11264 decimal). To take a
screenshot, load a value between 0x8000 and 0x812B (decimal 32768 and 33067),
corresponding to the flag bit F=1 and the So-Sg equal to the line number (0 to 299) to
be captured. When the flag bit of the register reads 1, the selected line of data is
available in memory locations 0x2C00-0x2F1F (11264-12063 decimal). Writing a 0
disables the screenshot feature, while the low bits So-Sg will always read the current
Gameduino scan line.

Table 19: SCREENSHOT_Y Register

bo Addre eng Byte Offset a Register Conte Defa
(hex) (dec) | (hex) | (dec) +0 +1
SCREENSHOT_Y | RW | 0x2406 | 10246 | 0x2 2 | 5756555453525150 | F X X X X X X Ss 0x0000

X: Unused bit position, ignored; should be 0 for compatibility reasons.
So-Ss: Raster line to capture, 0-299.
F: Screenshot flag, 0 or 1.

Unused Registers and Unused Address Space: Several portions of the Gameduino
memory map are unused. These addresses have no function, and are not mapped to
storage or control. When written, these locations have no effect and the data
written is discarded. When read, the locations have no specified value and should
read 0, but some addresses may read other, unpredictable values instead. In
particular, unused registers and unused address space is not connected to RAM or
other scratchpad storage.

Video Display

The Gameduino presents a 400x300 pixel
screen display at 72Hz (72 frames per
second). The pixels are square on standard
display devices. The Gameduino generates
its 400x300 video display by combining
image data from a number of image sources:
background color, a character graphics
playfield, and the sprites. Each image source
has a different priority - that is, the video
sources are arranged in order from back to
front, and sources that closer to the front
can cover up information from one that is
farther to the back. The character graphics
and sprites may include transparent pixels

that allow lower-priority pixels to show

, Fi 1: Vi Display L
through. The background doesn’t allow igure 1: Video Display Layers

28

DRAFT Gameduino Reference Manual

transparent pixels, since there is no lower-priority image to show through.

The sources for the Gameduino’s video display, in order from back to front, are:

* Background color,

* Character graphics, and

* Sprites in numeric order.
For example, image data on the playfield covers up the background color, and sprite
0 image data would in turn cover up the playfield. Sprite 255 would cover up pixels
from any lower-numbered sprite (including sprite 0) as well as playfield and
background pixels.

Scrolling

Each image source is a logical 512x512 pixel 7'
image. However, the Gameduino’s VGA v
output is limited to a 400x300 pixel window. SCROLL_Y
The SCROLL_X and SCROLL_Y registers are
used to define where the 400x300 display

window starts within the background image.

This is position of the top-left corner of the
visible window, as measured in pixels from
the top-left corner of the logical image.

SCROLL_X

A
\4

Wraparound

SCROLL_X and SCROLL_Y can store any
scroll value from 0 to 511. When SCROLL_X
and SCROLL_Y are both 0 (the default), the ¢
display window starts at the top corner of \1
the logical image; the right-most 212 pixels SCROLL_Y
and the bottom 112 pixels are off screen ————
and invisible. Scroll values of 112 and 212
(for X and Y respectively) would align the
visible screen with the bottom-right corner
of the logical image. Larger scroll values Figure 3: Scroll Wraparound

would cause the visible window to wrap

around the logical image: once pixel 511 of the logical image is output, the
subsequent pixels begin with pixel 0 of the same line. Similarly, once row 511 has
been output to the VGA screen, the next row to be output will be row 0 of the logical
image.

Figure 2: Scyolling

< P SCROLL_X

Table 20: SCROLL Registers

D
bo Addre eng Byte O R

(hex) (dec) | (hex) | (dec) +0 +1
SCROLL X | RW | 0x2804 | 10244 | 0x2 2 | 5756555453525150 | X X X X X X X Ss | 0x0000
SCROLL_Y | RW | 0x2406 | 10246 | 0x2 2 | 5756555453525150 | X X X X X X X Ss | 0x0000

X: Unused bit position, ignored; should be 0 for compatibility reasons.

29

DRAFT Gameduino Reference Manual

So-Ss: Scroll offset in pixels, 0-511.

Programmers can take advantage of this wrap-around feature to implement
continuously scrolling images. Characters and sprites that are currently off-screen
(the greyed-out areas of the figures above) can be updated while the screen scrolls,
giving the illusion of an infinite playfield.

<<<to-do: insert example code here>>>

Split Screen Scrolling

The scroll registers affect the entire frame, so changing the scroll values in the
middle of generating a frame on the display will cause parts of the display to scroll
independently of the rest of the display. The Gameduino’s J1 coprocessor can reload
the scroll registers in the middle of video generation to create a split-screen or
multi-pane scrolling effect.

<<<to-do: insert example code here>>>

Background Color

The background color is defined by the contents of the 16-bit BG_COLOR register.
This color appears behind all of the other video sources. On power-up, the
background color is the only image displayed, and defaults to 0x0000 (black).

The BG_COLOR value is a standard Gameduino 16-bit color value (see the section on
Color), except that Bit 15, the alpha (A) channel or transparency bit, is ignored if set.
The background can never be transparent, since there are no lower-priority pixels
to show through. The background is normally a solid color, but see the section on
raster chasing for examples involving multicolored backgrounds.

Table 21: BG_COLOR Register
bo Addre eng Byte Offset and Register Conte De
(hex) (dec) | (hex) | (dec) +0 +1

BG COLOR | RW | @x280E | 10254 | 0x2 2 | G2G1GeB4B3B2B1Be | X R4R3R2R1ReG4G3 | Ox0000

X: Alpha channel color information, ignored.
R4-Ro: Red channel color information, 0-32.
B4-Bo: Green channel color information, 0-32.
B4-Byo: Blue channel color information, 0-32.

Character Graphics

Together, the memory areas RAM_PIC, RAM_CHR, and RAM_PAL define the
character graphics picture that is displayed behind the game sprites and in front of
the background color. This picture consists of a logical 512x512 pixel image, but a
full bitmap of 2-byte colors would occupy a half-megabyte - obviously an issue for a
device with only 32kbytes of address space. Instead, RAM_PIC contains a 64x64 grid
of one-byte characters, where each character in the grid represents one of 256 8x8

30

DRAFT Gameduino Reference Manual

pixel bitmaps stored in RAM_CHR. Each character in the grid also has its own 4-color
palette in RAM_PAL.

RAM_PIC: Playfield Picture

RAM_PIC contains a 64x64 grid of characters that defines the character graphics
picture. Each byte in RAM_PIC represents a character bitmap to be looked up in
RAM_CHR. Character bitmaps are 8x8 pixels and can select one of four colors; color
information for each pixel is drawn from RAM_PAL. Character graphics pixels may
be transparent, allowing the background color to show through. The result is a
512x512 pixel character graphics picture that forms the playfield for game sketches.
The organization of the playfield is shown in Table 25: RAM_PIC Memory Map.

A 400x300 pixel (50x37% character) window of this picture is visible on screen.
The window may be scrolled around the picture on a single-pixel basis, so that parts
of as many as 51x39 characters may be fully or partially visible. The Gameduino’s
memory is dual-ported, so characters that are not currently on screen can be
updated by the Arduino SPI interface or by the J1 coprocessor without causing
visible artifacts.

RAM_CHR: Playfield Character Set

Each character code in RAM_PIC is looked up in RAM_CHR to determine the
corresponding 8x8 pixel character bitmap that should be displayed at the character
position. There are 256 bitmaps, one for each possible character code stored in
RAM_PIC. Table 26: RAM_CHR Memory Map shows the organization of the
character set memory. Character codes are listed in hexadecimal and decimal, along
with the ASCII glyph for characters 33 through 126 (0x31 through 0x7F). Glyphs
that are not printable ASCII characters are shaded grey.

The RAM_CHR bitmaps determine the graphic that is displayed at each character
location. Character bitmaps contain 4 colors and are therefore 2 bits deep; each
character bitmap occupies 16 bytes. The format of each character bitmap is shown
in Table 22: RAM_CHR Bitmap Organization. Pixels in the character bitmap have
coordinates starting at (0,0) for the upper left-hand corner of the bitmap, to (7,7) at
the lower right. Each pixel is two bits, the value 0-3 selects one of the four colors
stored in the corresponding character palette in RAM_PAL.

Table 22: RAM_CHR Bitmap Organization

Row Offse Byte Offset and B ap Conte

(hex) (dec) +0 +1
+0x00 +0 | POO1PO0e P101P10o P201P20e P301P300 | P401P400 P501P50¢ P601P60e P701P700
+0x02 +2 | PO1:PO1le P11:P11e P21:1P21e P31:P310 | P41:P41e P511P51¢ P611P61e P711P710¢
+0x04 +4 | PO21P02e P121P12¢ P221P22¢ P321P320 | P421P420 P521P52¢ P621P62e P721P720¢
+0x06 +6 | PO31P03e P131P13e P231P23¢ P331P330 | P431P430 P531P53¢ P631P63e P731P730
+0x08 +8 | PO41P04e P141P140 P241P24e P341P340 | PA41P440 P541P540 P641P640 P741P740
+Ox0A +10 | PO5:PO5¢ P151P15¢ P251P25¢ P35:P35¢ | P451P45¢ P551P55¢ P651P650 P751P750
+0x0C +12 | PO61P06e P161P160 P261P260 P361P360 | P461P460 P561P56¢ P661P660 P761P760
+0x0D +14 | PO71P07¢ P171P17¢ P271P270 P37:1P370¢ | P471P47¢ P571P57¢ P671P670 P771P770

Pxy1Pxyo: Pixel value at bitmap location (x,y), 0-3.

31

DRAFT Gameduino Reference Manual

Character Sets: Table 26: RAM_CHR Memory Map shows ASCII glyphs for
convenience. In ASCII, the control characters at 0 through 31 (0x00 through 0x1F)
and 127 (0x7F) aren’t printable ASCII characters, while character codes 128
through 255 (0x80 through 0xFF) are undefined. This makes these characters good
candidates for use as playfield graphics instead of alphabetic and numeric symbols.

ASCII is a relatively old standard; several more modern standards exist, and all are
supersets of the ASCII standard. Table 23: Character Sets shows the relationship
between six popular code pages. All share the same definition for characters (code
points) between 0 and 127 (0x00 and 0x7F) with ASCII.

Table 23: Character Sets

Character Set Ox00-Bx1F

0x20-0x7E Ox7F Ox80-0x9F | OxAO-OxFF
ASCII Control Printable | Control | Undefined | Undefined
Windows-1252 Control Printable | Control | Printable | Printable
Mac OS Roman Control Printable | Control | Printable | Printable
ISO-8859-1 Control Printable | Control Control Printable
ISO-8859-15 Control Printable | Control Control Printable
UTF-8 Control Printable | Control | Multi-byte | Multi-byte

Most Windows systems configured for a Western alphabet uses the Windows-1252
character set. Apple products use Mac OS Roman for the same purpose. The two
character sets of course differ on the characters above code 127 (0x7F); after all,
when have Redmond and Cupertino been able to completely agree on anything?

The relevant standards are ISO-8859-1 and its updated version, ISO-8859-15 (which
includes the Euro character and a few other modifications). UTF-8 is an 8-bit
encoding for Unicode that maximizes ASCII compatibility: codes 0 through 127
(0x00 through 0x7F) match ASCII, while the higher codes are only encountered as
part of multi-byte sequences that encode the rest of the Unicode character set.

RAM_PAL: Playfield Character Palettes

Each character on the playfield has its own 4-color palette in RAM_PAL. This means
that each character has its own color palette, and also that characters that have
identical bitmaps but require different colors must be stored as separate characters.
Color data is stored in standard ARGB1555 format, resulting in 256 character
palettes, each palette occupying 8 bytes. The overall structure of RAM_PAL is shown
in Table 27: RAM_PAL Memory Map.

The individual palettes are composed of 4 color entries, numbered 0 through 4 as
shown in Table 24: RAM_PAL Palette Format. Character bitmap pixels map directly
to the palette entries: bitmap pixel values of 0 are displayed in the color entry 0,
pixel value 1 is displayed using color entry 1, and so on. Transparency can be set for

32

DRAFT Gameduino Reference Manual

any color or colors in the palette. It is customary to code character sets so that color
entry 0 (pixel value 0) corresponds to the background or transparent color.

Table 24: RAM_PAL Palette Format

olo Bvte Offse
Qi +0 +1

0 +0 G2G1GeB4B3B2B1Bo | A RaR3R2R1ReG4G3

1 +2 G2G1GeB4B3B2B1Bo | A R4R3R2R1R0eG4G3

2 +4 G2G1GeB4B3B2B1Bo | A R4R3R2R1ReG4G3

3 +6 G2G1GeB4B3B2B1Be | A R4R3R2R1ReG4G3

A: Alpha channel color information, 0=opaque, 1=transparent.
Ro-R4: Red channel color information, 0-32; ignored when A=1.
Bo-B4: Green channel color information, 0-32; ignored when A=1.
Bo-B4: Blue channel color information, 0-32; ignored when A=1.

33

Table 25: RAM_PIC Memory Map

DRAFT Gameduino Reference Manual

Ro be Addre onte Defa RO e Addre onte Defa
(hex) (dec) (hex) (dec) (hex) (dec) (hex) (dec)

0x00 0 0x0000 0 64 character codes 0x00 0x20 32 Ox0800 | 2048 64 character codes 0x00
0x01 1 0x0040 64 64 character codes 0x00 0x21 33 0x0840 | 2112 64 character codes 0x00
0x02 2 0x0080 | 128 64 character codes 0x00 0x22 34 0x0880 | 2176 64 character codes 0x00
0x03 3 0x00CO | 192 64 character codes 0x00 0x23 35 0x08CO | 2240 64 character codes 0x00
Ox04 4 0x0100 256 64 character codes Ox00 0x24 36 Ox0900 | 2304 64 character codes Ox00
0x05 5 0x0140 | 320 64 character codes 0x00 0x25 37 0x0940 | 2368 64 character codes 0x00
0x06 6 0x0180 | 384 64 character codes 0x00 0x26 38 0x0980 | 2432 64 character codes 0x00
0x07 7 0x01CO | 448 64 character codes 0x00 0x27 39 0x09CO | 2496 64 character codes 0x00
0x08 8 0x0200 | 512 64 character codes 0x00 0x28 40 Ox0AG0 | 2560 64 character codes 0x00
0x09 9 0x0240 | 576 64 character codes 0x00 0x29 41 0x0A40 | 2624 64 character codes 0x00
Ox0A 10 0x0280 | 640 64 character codes 0x00 0x2A 42 Ox0A80 | 2688 64 character codes 0x00
0x0B 11 0x02C0 | 704 64 character codes 0x00 0x2B 43 Ox0OACO | 2752 64 character codes 0x00
0x0C 12 0x0300 | 768 64 character codes 0x00 0x2C 44 0x0BOO | 2816 64 character codes 0x00
0x0D 13 0x0340 | 832 64 character codes 0x00 0x2D 45 Ox0B40 | 2880 64 character codes 0x00
OxOE 14 0x0380 | 896 64 character codes 0x00 0x2E 46 Ox0B8O | 2944 64 character codes 0x00
OxOF 15 0x03CO | 960 64 character codes 0x00 0x2F 47 0x0BCO | 3008 64 character codes 0x00
Ox10 16 Ox0400 | 1024 64 character codes Ox00 0x30 48 Ox0CO0 | 3072 64 character codes Ox00
0x11 17 0x0440 | 1088 64 character codes 0x00 0x31 49 0x0C40 | 3136 64 character codes 0x00
0x12 18 0x0480 | 1152 64 character codes 0x00 0x32 50 0x0C80 | 3200 64 character codes 0x00
0x13 19 0x04C0O | 1216 64 character codes 0x00 0x33 51 0x0CCO | 3264 64 character codes 0x00
0x14 20 0x0500 | 1280 64 character codes 0x00 0x34 52 0x0DOO | 3328 64 character codes 0x00
0x15 21 0x0540 | 1344 64 character codes 0x00 0x35 53 0x0D40 | 3392 64 character codes 0x00
0x16 22 0x0580 | 1408 64 character codes 0x00 0x36 54 0x0D80 | 3456 64 character codes 0x00
0x17 23 Ox05CO | 1472 64 character codes 0x00 0x37 55 Ox0DCO | 3520 64 character codes 0x00
0x18 24 0x0600 | 1536 64 character codes 0x00 0x38 56 OXOQEOO | 3584 64 character codes 0x00
0x19 25 0x0640 | 1600 64 character codes 0x00 0x39 57 OxOFE40 | 3648 64 character codes 0x00
Ox1A 26 Ox0680 | 1664 64 character codes 0x00 Ox3A 58 OxOE80 | 3712 64 character codes 0x00
0x1B 27 0x06CO | 1728 64 character codes 0x00 0x3B 59 OxOECO | 3776 64 character codes Ox00
0x1C 28 0x0700 | 1792 64 character codes 0x00 0x3C 60 OxOF00 | 3840 64 character codes 0x00
0x1D 29 0x0740 | 1856 64 character codes 0x00 0x3D 61 OxOF40 | 3904 64 character codes 0x00
Ox1E 30 0x0780 | 1920 64 character codes 0x00 Ox3E 62 OxOF80 | 3968 64 character codes Ox00
Ox1F 31 Ox07CO | 1984 64 character codes 0x00 Ox3F 63 OXOFCO | 4032 64 character codes 0x00

34

Table 26: RAM_CHR Memory Map

DRAFT Gameduino Reference Manual

Character Contents a e Addre onte

(hex) | (dec) | (g) (hex) (dec) (hex) | (dec) | (g) (hex) (dec)

0x00 0 0x1000 | 4096 8x8x2 bitmap, 16 bytes 0x20 32 0x1200 | 4608 8x8x2 bitmap, 16 bytes
0x01 1 0x1010 | 4112 8x8x2 bitmap, 16 bytes 0x21 33| ! 0x1210 | 4624 8x8x2 bitmap, 16 bytes
0x02 2 0x1020 | 4128 8x8x2 bitmap, 16 bytes 0x22 34 | " 0x1220 | 4640 8x8x2 bitmap, 16 bytes
0x03 3 0x1030 | 4144 8x8x2 bitmap, 16 bytes 0x23 35 | # 0x1230 | 4656 8x8x2 bitmap, 16 bytes
0x04 4 0x1040 | 4160 8x8x2 bitmap, 16 bytes Ox24 36 | $ 0x1240 | 4672 8x8x2 bitmap, 16 bytes
0x05 5 0x1050 | 4176 8x8x2 bitmap, 16 bytes 0x25 37 | % 0x1250 | 4688 8x8x2 bitmap, 16 bytes
0x06 6 0x1060 | 4192 8x8x2 bitmap, 16 bytes 0x26 38| & 0x1260 | 4704 8x8x2 bitmap, 16 bytes
0x07 7 0x1070 | 4208 8x8x2 bitmap, 16 bytes Ox27 39 | ' 0x1270 | 4720 8x8x2 bitmap, 16 bytes
0x08 8 0x1080 | 4224 8x8x2 bitmap, 16 bytes 0x28 40 | (0x1280 | 4736 8x8x2 bitmap, 16 bytes
0x09 9 0x1090 | 4240 | | 8x8x2 bitmap, 16 bytes 0x29 | 41|) 0x1290 | 4752 8x8x2 bitmap, 16 bytes
0x0A 10 0x10A0 | 4256 8x8x2 bitmap, 16 bytes 0x2A 42 | * 0x12A0 | 4768 8x8x2 bitmap, 16 bytes
Ox0B 11 Ox10BO | 4272 8x8x2 bitmap, 16 bytes Ox2B 43 | + 0x12B0O | 4784 8x8x2 bitmap, 16 bytes
0x0C | 12 0x10CO | 4288 | | 8x8x2 bitmap, 16 bytes 0x2C | 44 | 0x12C0 | 4800 | | 8x8x2 bitmap, 16 bytes
Ox0D 13 0x10D0 | 4304 8x8x2 bitmap, 16 bytes 0x2D 45 | - ©x12D0O | 4816 8x8x2 bitmap, 16 bytes
OxOE 14 Ox10EQ | 4320 8x8x2 bitmap, 16 bytes Ox2E 46 | . Ox12E0 | 4832 8x8x2 bitmap, 16 bytes
OxOF 15 Ox10F0O | 4336 8x8x2 bitmap, 16 bytes Ox2F 47| / Ox12F0 | 4848 8x8x2 bitmap, 16 bytes
0x10 16 0x1100 | 4352 8x8x2 bitmap, 16 bytes 0x30 48 |1 0 0x1300 | 4864 8x8x2 bitmap, 16 bytes
Ox11 17 0x1110 | 4368 8x8x2 bitmap, 16 bytes 0x31 49| 1 0x1310 | 4880 8x8x2 bitmap, 16 bytes
0x12 18 0x1120 | 4384 8x8x2 bitmap, 16 bytes 0x32 50 | 2 0x1320 | 4896 8x8x2 bitmap, 16 bytes
0x13 19 0x1130 | 4400 8x8x2 bitmap, 16 bytes 0x33 51| 3 0x1330 | 4912 8x8x2 bitmap, 16 bytes
0x14 20 0x1140 | 4416 8x8x2 bitmap, 16 bytes 0x34 52| 4 0x1340 | 4928 8x8x2 bitmap, 16 bytes
0x15 21 0x1150 | 4432 8x8x2 bitmap, 16 bytes 0x35 53| 5 0x1350 | 4944 8x8x2 bitmap, 16 bytes
0x16 22 0x1160 | 4448 8x8x2 bitmap, 16 bytes 0x36 54| 6 0x1360 | 4960 8x8x2 bitmap, 16 bytes
0x17 23 0x1170 | 4464 8x8x2 bitmap, 16 bytes 0x37 55| 7 0x1370 | 4976 8x8x2 bitmap, 16 bytes
0x18 24 0x1180 | 4480 8x8x2 bitmap, 16 bytes Ox38 56 | 8 0x1380 | 4992 8x8x2 bitmap, 16 bytes
0x19 25 0x1190 | 4496 8x8x2 bitmap, 16 bytes 0x39 5719 0x1390 | 5008 8x8x2 bitmap, 16 bytes
Ox1A 26 Ox11A0 | 4512 8x8x2 bitmap, 16 bytes Ox3A 58 Ox13A0 | 5024 8x8x2 bitmap, 16 bytes
Ox1B 27 Ox11BO | 4528 8x8x2 bitmap, 16 bytes Ox3B 59 | ; 0x13B0O | 5040 8x8x2 bitmap, 16 bytes
ox1C | 28 0x11CO | 4544 8x8x2 bitmap, 16 bytes 0x3C | 60| < 0x13C0O | 5056 8x8x2 bitmap, 16 bytes
0x1D 29 0x11D0 | 4560 8x8x2 bitmap, 16 bytes 0x3D 61 | = ©x13D0 | 5072 8x8x2 bitmap, 16 bytes
Ox1E 30 Ox11EQ | 4576 8x8x2 bitmap, 16 bytes Ox3E 62 | > Ox13EQ | 5088 8x8x2 bitmap, 16 bytes
Ox1F 31 Ox11F0 | 4592 8x8x2 bitmap, 16 bytes Ox3F 63| ? Ox13F0 | 5104 8x8x2 bitmap, 16 bytes

35

DRAFT Gameduino Reference Manual

Character Address Contents a e Addre onte

(hex) | (dec) | (g) (hex) (dec) (hex) | (dec) | (g) (hex) (dec)

0x40 64 | @ 0x1400 | 5120 8x8x2 bitmap, 16 bytes 0x60 96 | ° 0x1600 | 5632 8x8x2 bitmap, 16 bytes
0x41 65| A 0x1410 | 5136 8x8x2 bitmap, 16 bytes 0x61 97 | a 0x1610 | 5648 8x8x2 bitmap, 16 bytes
Ox42 66 | B 0x1420 | 5152 8x8x2 bitmap, 16 bytes 0x62 98 | b 0x1620 | 5664 8x8x2 bitmap, 16 bytes
0x43 67 | C 0x1430 | 5168 8x8x2 bitmap, 16 bytes 0x63 9 | c 0x1630 | 5680 8x8x2 bitmap, 16 bytes
0x44 68 | D 0x1440 | 5184 8x8x2 bitmap, 16 bytes 0x64 | 100 | d 0x1640 | 5696 8x8x2 bitmap, 16 bytes
0x45 69 | E 0x1450 | 5200 8x8x2 bitmap, 16 bytes 0x65 | 101 | e 0x1650 | 5712 8x8x2 bitmap, 16 bytes
0Ox46 70 | F 0x1460 | 5216 8x8x2 bitmap, 16 bytes 0x66 102 | f 0x1660 | 5728 8x8x2 bitmap, 16 bytes
0x47 71| G 0x1470 | 5232 8x8x2 bitmap, 16 bytes Ox67 | 103 | g 0x1670 | 5744 8x8x2 bitmap, 16 bytes
Ox48 72 | H 0x1480 | 5248 8x8x2 bitmap, 16 bytes 0x68 | 104 | h 0x1680 | 5760 8x8x2 bitmap, 16 bytes
0x49 73 | 1 0x1490 | 5264 8x8x2 bitmap, 16 bytes 0x69 105 | i 0x1690 | 5776 8x8x2 bitmap, 16 bytes
Ox4A | 74|] 0x14A0 | 5280 | | 8x8x2 bitmap, 16 bytes Ox6A | 106 | j 0x16A0 | 5792 8x8x2 bitmap, 16 bytes
Ox4B 75 | K Ox14B0O | 5296 8x8x2 bitmap, 16 bytes 0x6B | 107 | k Ox16B0O | 5808 8x8x2 bitmap, 16 bytes
0Ox4C 76 | L 0x14CO | 5312 8x8x2 bitmap, 16 bytes 0x6C 108 | 1 0x16CO | 5824 8x8x2 bitmap, 16 bytes
0x4D 77 | M 0x14D0 | 5328 8x8x2 bitmap, 16 bytes 0x6D | 109 | m 0x16D0 | 5840 8x8x2 bitmap, 16 bytes
Ox4E 78 | N O0x14E0 | 5344 8x8x2 bitmap, 16 bytes Ox6E | 110 | n Ox16EO | 5856 8x8x2 bitmap, 16 bytes
Ox4F 79| O Ox14F0 | 5360 8x8x2 bitmap, 16 bytes Ox6F 111 | o Ox16F0O | 5872 8x8x2 bitmap, 16 bytes
0x50 80 | P 0x1500 | 5376 8x8x2 bitmap, 16 bytes 0x70 | 112 | p 0x1700 | 5888 8x8x2 bitmap, 16 bytes
0x51 81| Q 0x1510 | 5392 8x8x2 bitmap, 16 bytes 0x71 113 | q 0x1710 | 5904 8x8x2 bitmap, 16 bytes
0x52 82 | R 0x1520 | 5408 8x8x2 bitmap, 16 bytes 0x72 | 114 | r 0x1720 | 5920 8x8x2 bitmap, 16 bytes
0x53 83| S 0x1530 | 5424 8x8x2 bitmap, 16 bytes 0x73 | 115 | s 0x1730 | 5936 8x8x2 bitmap, 16 bytes
Ox54 84 | T 0x1540 | 5440 8x8x2 bitmap, 16 bytes 0x74 116 | t 0x1740 | 5952 8x8x2 bitmap, 16 bytes
0x55 85| U 0x1550 | 5456 8x8x2 bitmap, 16 bytes 0x75 | 117 | u 0x1750 | 5968 8x8x2 bitmap, 16 bytes
0x56 86 | V 0x1560 | 5472 8x8x2 bitmap, 16 bytes 0x76 | 118 | v 0x1760 | 5984 8x8x2 bitmap, 16 bytes
0x57 87 | W 0x1570 | 5488 8x8x2 bitmap, 16 bytes 0x77 | 119 | w 0x1770 | 6000 8x8x2 bitmap, 16 bytes
0x58 88 | X 0x1580 | 5504 8x8x2 bitmap, 16 bytes 0x78 | 120 | x 0x1780 | 6016 8x8x2 bitmap, 16 bytes
0x59 89| Y 0x1590 | 5520 8x8x2 bitmap, 16 bytes 0x79 121 | y 0x1790 | 6032 8x8x2 bitmap, 16 bytes
Ox5A 9 | Z Ox15A0 | 5536 8x8x2 bitmap, 16 bytes Ox7A | 122 | z Ox17A0 | 6048 8x8x2 bitmap, 16 bytes
0x5B 91| [Ox15B0O | 5552 8x8x2 bitmap, 16 bytes 0x7B | 123 | { Ox17B0O | 6064 8x8x2 bitmap, 16 bytes
Ox5C 92 | '\ Ox15C0O | 5568 8x8x2 bitmap, 16 bytes Ox7C 124 | 0x17CO | 6080 8x8x2 bitmap, 16 bytes
ox5D | 93|] 0x15D0 | 5584 | | 8x8x2 bitmap, 16 bytes 0x7D | 125 | } 0x17D0 | 6096 | | 8x8x2 bitmap, 16 bytes
Ox5E 94 | A Ox15E0 | 5600 8x8x2 bitmap, 16 bytes Ox7E | 126 | ~ Ox17E0 | 6112 8x8x2 bitmap, 16 bytes
Ox5F 95 Ox15F0 | 5616 8x8x2 bitmap, 16 bytes Ox7F 127 Ox17F0 | 6128 8x8x2 bitmap, 16 bytes

36

DRAFT Gameduino Reference Manual

Character Address Contents a e Addre onte

(hex) | (dec) | (g) (hex) (dec) (hex) | (dec) | (g) (hex) (dec)

0x80 | 128 0x1800 | 6144 8x8x2 bitmap, 16 bytes OxA0 | 160 Ox1A00 | 6656 8x8x2 bitmap, 16 bytes
Ox81 | 129 0x1810 | 6160 8x8x2 bitmap, 16 bytes OxAl 161 Ox1A10 | 6672 8x8x2 bitmap, 16 bytes
0x82 | 130 0x1820 | 6176 | | 8x8x2 bitmap, 16 bytes 0xA2 | 162 0x1A20 | 6688 | | 8x8x2 bitmap, 16 bytes
0x83 | 131 0x1830 | 6192 8x8x2 bitmap, 16 bytes OxA3 | 163 Ox1A30 | 6704 8x8x2 bitmap, 16 bytes
0x84 | 132 0x1840 | 6208 8x8x2 bitmap, 16 bytes OxA4 | 164 Ox1A40 | 6720 8x8x2 bitmap, 16 bytes
0x85 | 133 0x1850 | 6224 8x8x2 bitmap, 16 bytes OxA5 | 165 Ox1A50 | 6736 8x8x2 bitmap, 16 bytes
Ox86 | 134 0x1860 | 6240 8x8x2 bitmap, 16 bytes OxA6 | 166 Ox1A60 | 6752 8x8x2 bitmap, 16 bytes
0x87 | 135 0x1870 | 6256 8x8x2 bitmap, 16 bytes OxA7 | 167 Ox1A70 | 6768 8x8x2 bitmap, 16 bytes
0x88 | 136 0x1880 | 6272 8x8x2 bitmap, 16 bytes OxA8 | 168 Ox1A80 | 6784 8x8x2 bitmap, 16 bytes
Ox89 | 137 0x1890 | 6288 8x8x2 bitmap, 16 bytes OxA9 | 169 Ox1A90 | 6800 8x8x2 bitmap, 16 bytes
0x8A | 138 0x18A0 | 6304 8x8x2 bitmap, 16 bytes OxAA | 170 0x1AAO | 6816 8x8x2 bitmap, 16 bytes
Ox8B | 139 Ox18BO | 6320 8x8x2 bitmap, 16 bytes OxAB | 171 Ox1ABO | 6832 8x8x2 bitmap, 16 bytes
Ox8C | 140 0x18CO | 6336 8x8x2 bitmap, 16 bytes OxAC | 172 Ox1ACO | 6848 8x8x2 bitmap, 16 bytes
0x8D | 141 0x18D0O | 6352 8x8x2 bitmap, 16 bytes OxAD | 173 Ox1ADO | 6864 8x8x2 bitmap, 16 bytes
Ox8E 142 Ox18EO | 6368 8x8x2 bitmap, 16 bytes OxAE 174 Ox1AEO | 6880 8x8x2 bitmap, 16 bytes
Ox8F 143 Ox18F0O | 6384 8x8x2 bitmap, 16 bytes OxAF 175 Ox1AFO | 6896 8x8x2 bitmap, 16 bytes
0x90 | 144 0x1900 | 6400 8x8x2 bitmap, 16 bytes 0xBO | 176 ©x1BOO | 6912 8x8x2 bitmap, 16 bytes
0x91 | 145 0x1910 | 6416 8x8x2 bitmap, 16 bytes 0xB1 177 Ox1B10 | 6928 8x8x2 bitmap, 16 bytes
0x92 | 146 0x1920 | 6432 8x8x2 bitmap, 16 bytes 0xB2 | 178 0x1B20 | 6944 8x8x2 bitmap, 16 bytes
0x93 | 147 0x1930 | 6448 8x8x2 bitmap, 16 bytes 0xB3 | 179 0x1B30 | 6960 8x8x2 bitmap, 16 bytes
Ox94 | 148 0x1940 | 6464 8x8x2 bitmap, 16 bytes OxB4 | 180 Ox1B40 | 6976 8x8x2 bitmap, 16 bytes
0x95 | 149 0x1950 | 6480 8x8x2 bitmap, 16 bytes OxB5 | 181 0x1B50 | 6992 8x8x2 bitmap, 16 bytes
0x96 | 150 0x1960 | 6496 8x8x2 bitmap, 16 bytes OxB6 | 182 Ox1B60 | 7008 8x8x2 bitmap, 16 bytes
0x97 | 151 0x1970 | 6512 8x8x2 bitmap, 16 bytes OxB7 | 183 0x1B70 | 7024 8x8x2 bitmap, 16 bytes
0x98 | 152 0x1980 | 6528 8x8x2 bitmap, 16 bytes OxB8 | 184 0x1B80 | 7040 8x8x2 bitmap, 16 bytes
0x99 | 153 0x1990 | 6544 8x8x2 bitmap, 16 bytes OxB9 | 185 0x1B90 | 7056 8x8x2 bitmap, 16 bytes
0x9A | 154 0x19A0 | 6560 | | 8x8x2 bitmap, 16 bytes 0xBA | 186 0x1BAO | 7072 | | 8x8x2 bitmap, 16 bytes
Ox9B | 155 0x19BO | 6576 8x8x2 bitmap, 16 bytes OxBB | 187 Ox1BBO | 7088 8x8x2 bitmap, 16 bytes
Ox9C | 156 0x19CO | 6592 8x8x2 bitmap, 16 bytes OxBC | 188 Ox1BCO | 7104 8x8x2 bitmap, 16 bytes
0x9D | 157 0x19D0 | 6608 8x8x2 bitmap, 16 bytes OxBD | 189 Ox1BDO | 7120 8x8x2 bitmap, 16 bytes
Ox9E | 158 Ox19E0 | 6624 8x8x2 bitmap, 16 bytes OxBE | 190 Ox1BEO | 7136 8x8x2 bitmap, 16 bytes
Ox9F 159 Ox19F0 | 6640 8x8x2 bitmap, 16 bytes OxBF 191 Ox1BFO | 7152 8x8x2 bitmap, 16 bytes

37

DRAFT Gameduino Reference Manual

Character Address Contents a e Addre onte

(hex) | (dec) | (g) (hex) (dec) (hex) | (dec) | (g) (hex) (dec)

OxCO | 192 Ox1C00 | 7168 8x8x2 bitmap, 16 bytes OxEO | 224 Ox1EQ0 | 7680 8x8x2 bitmap, 16 bytes
0xC1 193 0x1C10 | 7184 8x8x2 bitmap, 16 bytes OxE1l 225 OXx1E10 | 7696 8x8x2 bitmap, 16 bytes
0xC2 | 194 0x1C20 | 7200 | | 8x8x2 bitmap, 16 bytes OxE2 | 226 Ox1E20 | 7712 8x8x2 bitmap, 16 bytes
0xC3 | 195 06x1C30 | 7216 8x8x2 bitmap, 16 bytes OxE3 | 227 Ox1E30 | 7728 8x8x2 bitmap, 16 bytes
OxC4 196 0x1C40 | 7232 8x8x2 bitmap, 16 bytes OxE4 228 OXx1E40 | 7744 8x8x2 bitmap, 16 bytes
0xC5 197 0x1C50 | 7248 8x8x2 bitmap, 16 bytes OxE5 229 Ox1E50 | 7760 8x8x2 bitmap, 16 bytes
OxC6 | 198 0x1C60 | 7264 8x8x2 bitmap, 16 bytes OxE6 | 230 Ox1E60 | 7776 8x8x2 bitmap, 16 bytes
OxC7 | 199 0x1C70 | 7280 8x8x2 bitmap, 16 bytes OxE7 | 231 Ox1E70 | 7792 8x8x2 bitmap, 16 bytes
OxC8 | 200 Ox1C80 | 7296 8x8x2 bitmap, 16 bytes OxE8 | 232 Ox1E80 | 7808 8x8x2 bitmap, 16 bytes
0xC9 201 Ox1C90 | 7312 8x8x2 bitmap, 16 bytes OxE9 233 OXx1E90 | 7824 8x8x2 bitmap, 16 bytes
OxCA | 202 0x1CA@ | 7328 | | 8x8x2 bitmap, 16 bytes OXEA | 234 Ox1EAQ | 7840 | | 8x8x2 bitmap, 16 bytes
OxCB | 203 Ox1CBO | 7344 8x8x2 bitmap, 16 bytes OXEB | 235 Ox1EBO | 7856 8x8x2 bitmap, 16 bytes
OxCC | 204 0x1CCO | 7360 8x8x2 bitmap, 16 bytes OxEC | 236 Ox1ECO | 7872 8x8x2 bitmap, 16 bytes
OxCD | 205 0x1CDO | 7376 8x8x2 bitmap, 16 bytes OXED 237 Ox1EDO | 7888 8x8x2 bitmap, 16 bytes
OxCE | 206 0x1CEO | 7392 8x8x2 bitmap, 16 bytes OxEE | 238 Ox1EEQ | 7904 8x8x2 bitmap, 16 bytes
OxCF 207 Ox1CFO | 7408 8x8x2 bitmap, 16 bytes OxEF 239 OX1EFO | 7920 8x8x2 bitmap, 16 bytes
OxDO | 208 0x1D00 | 7424 8x8x2 bitmap, 16 bytes OxFO | 240 Ox1F00O | 7936 8x8x2 bitmap, 16 bytes
0xD1 209 Ox1D10 | 7440 8x8x2 bitmap, 16 bytes OxF1 241 Ox1F10 | 7952 8x8x2 bitmap, 16 bytes
0xD2 | 210 0x1D20 | 7456 | | 8x8x2 bitmap, 16 bytes OxF2 | 242 Ox1F20 | 7968 8x8x2 bitmap, 16 bytes
0xD3 | 211 Ox1D30 | 7472 8x8x2 bitmap, 16 bytes OxF3 | 243 Ox1F30 | 7984 8x8x2 bitmap, 16 bytes
OxD4 | 212 Ox1D40 | 7488 8x8x2 bitmap, 16 bytes OxF4 244 Ox1F40 | 8000 8x8x2 bitmap, 16 bytes
OxD5 | 213 0x1D50 | 7504 8x8x2 bitmap, 16 bytes OxF5 | 245 Ox1F50 | 8016 8x8x2 bitmap, 16 bytes
OxD6 | 214 Ox1D60 | 7520 8x8x2 bitmap, 16 bytes OxF6 | 246 Ox1F60 | 8032 8x8x2 bitmap, 16 bytes
0xD7 | 215 0x1D70 | 7536 8x8x2 bitmap, 16 bytes OxF7 | 247 Ox1F70 | 8048 8x8x2 bitmap, 16 bytes
OxD8 | 216 0x1D80 | 7552 8x8x2 bitmap, 16 bytes OxF8 | 248 Ox1F80 | 8064 8x8x2 bitmap, 16 bytes
0xD9 217 Ox1D90 | 7568 8x8x2 bitmap, 16 bytes OxF9 249 Ox1F90 | 8080 8x8x2 bitmap, 16 bytes
OxDA | 218 0x1DA@ | 7584 | | 8x8x2 bitmap, 16 bytes OxFA | 250 0x1FAQ | 8096 | | 8x8x2 bitmap, 16 bytes
OxDB | 219 0x1DBO | 7600 8x8x2 bitmap, 16 bytes OxFB | 251 Ox1FBO | 8112 8x8x2 bitmap, 16 bytes
OxDC 220 Ox1DCO | 7616 8x8x2 bitmap, 16 bytes OxFC 252 Ox1FCO | 8128 8x8x2 bitmap, 16 bytes
OxDD | 221 0x1DDO | 7632 8x8x2 bitmap, 16 bytes OxFD | 253 Ox1FDO | 8144 | | 8x8x2 bitmap, 16 bytes
OxDE | 222 Ox1DEO | 7648 8x8x2 bitmap, 16 bytes OxFE | 254 Ox1FEO | 8160 8x8x2 bitmap, 16 bytes
OxDF 223 Ox1DFO | 7664 8x8x2 bitmap, 16 bytes OxFF 255 Ox1FFO | 8176 8x8x2 bitmap, 16 bytes

38

Table 27: RAM_PAL Memory Map

DRAFT Gameduino Reference Manual

Character Contents a e Addre onte

(hex) | (dec) | (g) (hex) (dec) (hex) | (dec) | (g) (hex) (dec)

0x00 0 0x2000 | 8192 4 color palette, 8 bytes 0x20 32 0x2100 | 8448 4 color palette, 8 bytes
0x01 1 0x2008 | 8200 4 color palette, 8 bytes 0x21 33] ! 0x2108 | 8456 4 color palette, 8 bytes
0x02 2 0x2010 | 8208 4 color palette, 8 bytes 0x22 34| " 0x2110 | 8464 4 color palette, 8 bytes
0x03 3 0x2018 | 8216 4 color palette, 8 bytes 0x23 35 | # 0x2118 | 8472 4 color palette, 8 bytes
0x04 4 0x2020 | 8224 4 color palette, 8 bytes 0x24 36 | $ 0x2120 | 8480 4 color palette, 8 bytes
0x05 E) 0x2028 | 8232 4 color palette, 8 bytes 0x25 37 | % ©x2128 | 8488 4 color palette, 8 bytes
0x06 6 0x2030 | 8240 4 color palette, 8 bytes 0x26 38| & 0x2130 | 8496 4 color palette, 8 bytes
0x07 7 0x2038 | 8248 4 color palette, 8 bytes 0x27 39 | 0x2138 | 8504 4 color palette, 8 bytes
0x08 8 0x2040 | 8256 4 color palette, 8 bytes 0x28 40 | (0x2140 | 8512 4 color palette, 8 bytes
0x09 9 0x2048 | 8264 4 color palette, 8 bytes 0x29 41 |) 0x2148 | 8520 4 color palette, 8 bytes
Ox0A 10 0x2050 | 8272 4 color palette, 8 bytes Ox2A 42 | * 0x2150 | 8528 4 color palette, 8 bytes
0Ox0B 11 0x2058 | 8280 4 color palette, 8 bytes 0x2B 43 | + 0x2158 | 8536 4 color palette, 8 bytes
0x0C 12 0x2060 | 8288 4 color palette, 8 bytes 0x2C 44 | 0x2160 | 8544 4 color palette, 8 bytes
Ox0D 13 0x2068 | 8296 4 color palette, 8 bytes 0x2D 45| - 0x2168 | 8552 4 color palette, 8 bytes
OxOE 14 0x2070 | 8304 4 color palette, 8 bytes Ox2E 46 0x2170 | 8560 4 color palette, 8 bytes
OxOF 15 0x2078 | 8312 4 color palette, 8 bytes Ox2F 47 1 / 0x2178 | 8568 4 color palette, 8 bytes
0x10 16 0x2080 | 8320 4 color palette, 8 bytes 0x30 48 | 0 0x2180 | 8576 4 color palette, 8 bytes
0x11 17 0x2088 | 8328 4 color palette, 8 bytes 0x31 49| 1 0x2188 | 8584 4 color palette, 8 bytes
0x12 18 0x2090 | 8336 4 color palette, 8 bytes 0x32 50 | 2 0x2190 | 8592 4 color palette, 8 bytes
0x13 19 0x2098 | 8344 4 color palette, 8 bytes 0x33 51| 3 0x2198 | 8600 4 color palette, 8 bytes
0x14 20 0x20A0 | 8352 4 color palette, 8 bytes 0x34 52 | 4 0x21A0 | 8608 4 color palette, 8 bytes
0x15 21 Ox20A8 | 8360 4 color palette, 8 bytes 0x35 53| 5 Ox21A8 | 8616 4 color palette, 8 bytes
0x16 22 Ox20B0O | 8368 4 color palette, 8 bytes 0x36 54| 6 0x21B0O | 8624 4 color palette, 8 bytes
Ox17 23 0x20B8 | 8376 4 color palette, 8 bytes 0x37 55 | 7 0x21B8 | 8632 4 color palette, 8 bytes
0x18 24 0x20C0O | 8384 4 color palette, 8 bytes 0x38 56 | 8 0x21C0O | 8640 4 color palette, 8 bytes
0x19 25 0x20C8 | 8392 4 color palette, 8 bytes 0x39 57| 9 0x21C8 | 8648 4 color palette, 8 bytes
Ox1A 26 0x20D0 | 8400 4 color palette, 8 bytes 0x3A 58 0x21DO | 8656 4 color palette, 8 bytes
0x1B 27 0x20D8 | 8408 4 color palette, 8 bytes 0x3B 59| ; 0x21D8 | 8664 4 color palette, 8 bytes
0x1C 28 Ox20EQ | 8416 4 color palette, 8 bytes 0x3C 60 | < Ox21EQ | 8672 4 color palette, 8 bytes
0x1D 29 Ox20E8 | 8424 4 color palette, 8 bytes 0x3D 61| = Ox21E8 | 8680 4 color palette, 8 bytes
Ox1E 30 Ox20F0 | 8432 4 color palette, 8 bytes Ox3E 62 | > Ox21F0O | 8688 4 color palette, 8 bytes
Ox1F 31 Ox20F8 | 8440 4 color palette, 8 bytes Ox3F 63| ? Ox21F8 | 8696 4 color palette, 8 bytes

39

DRAFT Gameduino Reference Manual

Character Address Contents a e Addre onte

(hex) | (dec) | (g) (hex) (dec) (hex) | (dec) | (g) (hex) (dec)

0x40 64 | @ 0x2200 | 8704 4 color palette, 8 bytes 0x60 96 | ° 0x2300 | 8960 4 color palette, 8 bytes
Ox41 65| A 0x2208 | 8712 4 color palette, 8 bytes 0x61 97 | a 0x2308 | 8968 4 color palette, 8 bytes
0x42 66 | B 0x2210 | 8720 4 color palette, 8 bytes 0x62 98 | b 0x2310 | 8976 4 color palette, 8 bytes
0x43 67 | C 0x2218 | 8728 4 color palette, 8 bytes 0x63 9| ¢ 0x2318 | 8984 4 color palette, 8 bytes
Ox44 68 | D 0x2220 | 8736 4 color palette, 8 bytes 0x64 | 100 | d 0x2320 | 8992 4 color palette, 8 bytes
0x45 69 | E 0x2228 | 8744 4 color palette, 8 bytes Ox65 | 101 | e 0x2328 | 9000 4 color palette, 8 bytes
0x46 70 | F 0x2230 | 8752 4 color palette, 8 bytes Ox66 | 102 | f 0x2330 | 9008 4 color palette, 8 bytes
Ox47 71| G 0x2238 | 8760 4 color palette, 8 bytes Ox67 | 103 | g 0x2338 | 9016 4 color palette, 8 bytes
0x48 72 | H 0x2240 | 8768 4 color palette, 8 bytes 0x68 | 104 | h 0x2340 | 9024 4 color palette, 8 bytes
0x49 73| 1 0x2248 | 8776 4 color palette, 8 bytes 0x69 | 105 | i 0x2348 | 9032 4 color palette, 8 bytes
Ox4A 741] 0x2250 | 8784 4 color palette, 8 bytes Ox6A | 106 | j 0x2350 | 9040 4 color palette, 8 bytes
Ox4B 75 | K 0x2258 | 8792 4 color palette, 8 bytes 0x6B | 107 | k 0x2358 | 9048 4 color palette, 8 bytes
Ox4C 76 | L 0x2260 | 8800 4 color palette, 8 bytes Ox6C | 108 | 1 0x2360 | 9056 4 color palette, 8 bytes
0x4D 77 | M 0x2268 | 8808 4 color palette, 8 bytes 0x6D | 109 | m 0x2368 | 9064 4 color palette, 8 bytes
Ox4E 78 | N 0x2270 | 8816 4 color palette, 8 bytes Ox6E | 110 | n 0x2370 | 9072 4 color palette, 8 bytes
Ox4F 791 0 0x2278 | 8824 4 color palette, 8 bytes Ox6F | 111 | o 0x2378 | 9080 4 color palette, 8 bytes
0x50 80 | P 0x2280 | 8832 4 color palette, 8 bytes 0x70 | 112 | p 0x2380 | 9088 4 color palette, 8 bytes
0x51 81| Q 0x2288 | 8840 4 color palette, 8 bytes 0x71 | 113 | q 0x2388 | 9096 4 color palette, 8 bytes
0x52 82| R 0x2290 | 8848 4 color palette, 8 bytes 0x72 | 114 | r 0x2390 | 9104 4 color palette, 8 bytes
0x53 83| S 0x2298 | 8856 4 color palette, 8 bytes 0x73 | 115 | s 0x2398 | 9112 4 color palette, 8 bytes
0x54 84 | T 0x22A0 | 8864 4 color palette, 8 bytes 0x74 | 116 | t Ox23A0 | 9120 4 color palette, 8 bytes
0x55 85| U Ox22A8 | 8872 4 color palette, 8 bytes 0x75 | 117 | u Ox23A8 | 9128 4 color palette, 8 bytes
0x56 86 | V 0x22B0O | 8880 4 color palette, 8 bytes 0x76 | 118 | v Ox23B0O | 9136 4 color palette, 8 bytes
0x57 87 | W 0x22B8 | 8888 4 color palette, 8 bytes 0x77 | 119 | w 0x23B8 | 9144 4 color palette, 8 bytes
0x58 88 | X 0x22C0O | 8896 4 color palette, 8 bytes 0x78 | 120 | x 0x23C0O | 9152 4 color palette, 8 bytes
0x59 89| Y 0x22C8 | 8904 4 color palette, 8 bytes 0x79 | 121 | y 0x23C8 | 9160 4 color palette, 8 bytes
Ox5A 9 | Z 0x22D0 | 8912 4 color palette, 8 bytes Ox7A | 122 | z 0x23D0 | 9168 4 color palette, 8 bytes
0x5B 91| [0x22D8 | 8920 4 color palette, 8 bytes ox7B | 123 | { 0x23D8 | 9176 4 color palette, 8 bytes
0x5C 92 | \ Ox22EO | 8928 4 color palette, 8 bytes 0x7C | 124 | | Ox23EQ | 9184 4 color palette, 8 bytes
Ox5D 93 |] Ox22E8 | 8936 4 color palette, 8 bytes Ox7D | 125 | } Ox23E8 | 9192 4 color palette, 8 bytes
Ox5E 94 | A Ox22F0 | 8944 4 color palette, 8 bytes Ox7E | 126 | ~ Ox23F0 | 9200 4 color palette, 8 bytes
Ox5F 95 Ox22F8 | 8952 4 color palette, 8 bytes Ox7F | 127 Ox23F8 | 9208 4 color palette, 8 bytes

40

DRAFT Gameduino Reference Manual

Character Address Contents a e Addre onte

(hex) | (dec) | (g) (hex) (dec) (hex) | (dec) | (g) (hex) (dec)

0x80 | 128 0x2400 | 9216 4 color palette, 8 bytes OxAQ | 160 0x2500 | 9472 4 color palette, 8 bytes
0x81 | 129 0x2408 | 9224 4 color palette, 8 bytes OxAl | 161 0x2508 | 9480 4 color palette, 8 bytes
0x82 | 130 0x2410 | 9232 4 color palette, 8 bytes OxA2 | 162 0x2510 | 9488 4 color palette, 8 bytes
0x83 | 131 0x2418 | 9240 4 color palette, 8 bytes OxA3 | 163 0x2518 | 9496 4 color palette, 8 bytes
0x84 | 132 0x2420 | 9248 4 color palette, 8 bytes OxA4 | 164 0x2520 | 9504 4 color palette, 8 bytes
0x85 | 133 0x2428 | 9256 4 color palette, 8 bytes OxA5 | 165 0x2528 | 9512 4 color palette, 8 bytes
0x86 | 134 0x2430 | 9264 4 color palette, 8 bytes OxA6 | 166 ©x2530 | 9520 4 color palette, 8 bytes
Ox87 | 135 0x2438 | 9272 4 color palette, 8 bytes OxA7 | 167 0x2538 | 9528 4 color palette, 8 bytes
0x88 | 136 0x2440 | 9280 4 color palette, 8 bytes OxA8 | 168 0x2540 | 9536 4 color palette, 8 bytes
Ox89 | 137 0x2448 | 9288 4 color palette, 8 bytes OxA9 | 169 0x2548 | 9544 4 color palette, 8 bytes
Ox8A | 138 0x2450 | 9296 4 color palette, 8 bytes OxAA | 170 0x2550 | 9552 4 color palette, 8 bytes
Ox8B | 139 0x2458 | 9304 4 color palette, 8 bytes OxAB | 171 0x2558 | 9560 4 color palette, 8 bytes
0x8C | 140 0x2460 | 9312 4 color palette, 8 bytes OxAC | 172 0x2560 | 9568 4 color palette, 8 bytes
0x8D | 141 0x2468 | 9320 4 color palette, 8 bytes OxAD | 173 Ox2568 | 9576 4 color palette, 8 bytes
Ox8E | 142 0x2470 | 9328 4 color palette, 8 bytes OxAE | 174 0x2570 | 9584 4 color palette, 8 bytes
Ox8F | 143 0x2478 | 9336 4 color palette, 8 bytes OXAF | 175 0x2578 | 9592 4 color palette, 8 bytes
0x90 | 144 0x2480 | 9344 4 color palette, 8 bytes OxBO | 176 0x2580 | 9600 4 color palette, 8 bytes
0x91 | 145 0x2488 | 9352 4 color palette, 8 bytes OxB1 | 177 0x2588 | 9608 4 color palette, 8 bytes
0x92 | 146 0x2490 | 9360 4 color palette, 8 bytes 0xB2 | 178 0x2590 | 9616 4 color palette, 8 bytes
0x93 | 147 0x2498 | 9368 4 color palette, 8 bytes 0xB3 | 179 0x2598 | 9624 4 color palette, 8 bytes
Ox94 | 1438 Ox24A0 | 9376 4 color palette, 8 bytes 0xB4 | 180 Ox25A0 | 9632 4 color palette, 8 bytes
0x95 | 149 0x24A8 | 9384 4 color palette, 8 bytes OxB5 | 181 0x25A8 | 9640 4 color palette, 8 bytes
0x96 | 150 0x24B0O | 9392 4 color palette, 8 bytes OxB6 | 182 0x25B0 | 9648 4 color palette, 8 bytes
0x97 | 151 0x24B8 | 9400 4 color palette, 8 bytes OxB7 | 183 0x25B8 | 9656 4 color palette, 8 bytes
0x98 | 152 0x24C0O | 9408 4 color palette, 8 bytes OxB8 | 184 0x25C0 | 9664 4 color palette, 8 bytes
0x99 | 153 Ox24C8 | 9416 4 color palette, 8 bytes OxB9 | 185 0x25C8 | 9672 4 color palette, 8 bytes
Ox9A | 154 0x24D0 | 9424 4 color palette, 8 bytes OxBA | 186 0x25D0 | 9680 4 color palette, 8 bytes
0x9B | 155 0x24D8 | 9432 4 color palette, 8 bytes OxBB | 187 0x25D8 | 9688 4 color palette, 8 bytes
0x9C | 156 Ox24E0Q | 9440 4 color palette, 8 bytes OxBC | 188 Ox25E0 | 9696 4 color palette, 8 bytes
0x9D | 157 Ox24E8 | 9448 4 color palette, 8 bytes OxBD | 189 Ox25E8 | 9704 4 color palette, 8 bytes
Ox9E | 158 Ox24F0 | 9456 4 color palette, 8 bytes OxBE | 190 Ox25F0 | 9712 4 color palette, 8 bytes
Ox9F | 159 Ox24F8 | 9464 4 color palette, 8 bytes OxBF | 191 Ox25F8 | 9720 4 color palette, 8 bytes

41

DRAFT Gameduino Reference Manual

Character Address Contents aracte Addre onte

(hex) | (dec) | (g) (hex) (dec) (hex) | (dec) | (g) (hex) (dec)

OxCO | 192 0x2600 | 9728 4 color palette, 8 bytes OxEO | 224 0x2700 | 9984 4 color palette, 8 bytes
0xC1 | 193 0x2608 | 9736 4 color palette, 8 bytes OxE1 | 225 0x2708 | 9992 4 color palette, 8 bytes
OxC2 | 194 0x2610 | 9744 4 color palette, 8 bytes OxE2 | 226 0x2710 | 10000 4 color palette, 8 bytes
OxC3 | 195 0x2618 | 9752 4 color palette, 8 bytes OxE3 | 227 0x2718 | 10008 4 color palette, 8 bytes
0xC4 | 196 0x2620 | 9760 4 color palette, 8 bytes OxE4 | 228 0x2720 | 10016 4 color palette, 8 bytes
OxC5 | 197 0x2628 | 9768 4 color palette, 8 bytes OxE5 | 229 0x2728 | 10024 4 color palette, 8 bytes
OxC6 | 198 0x2630 | 9776 4 color palette, 8 bytes OxE6 | 230 0x2730 | 10032 4 color palette, 8 bytes
OxC7 | 199 0x2638 | 9784 4 color palette, 8 bytes OxE7 | 231 0x2738 | 10040 4 color palette, 8 bytes
0xC8 | 200 0x2640 | 9792 4 color palette, 8 bytes OxE8 | 232 0x27460 | 10048 4 color palette, 8 bytes
oxC9 | 201 0x2648 | 9800 4 color palette, 8 bytes OxE9 | 233 0x2748 | 10056 4 color palette, 8 bytes
OxCA | 202 0x2650 | 9808 4 color palette, 8 bytes OxEA | 234 0x2750 | 10064 4 color palette, 8 bytes
OxCB | 203 0x2658 | 9816 4 color palette, 8 bytes OxEB | 235 0x2758 | 10072 4 color palette, 8 bytes
OxCC | 204 0x2660 | 9824 4 color palette, 8 bytes OxEC | 236 0x2760 | 10080 4 color palette, 8 bytes
OxCD | 205 0x2668 | 9832 4 color palette, 8 bytes OXED | 237 0x2768 | 10088 4 color palette, 8 bytes
OxCE | 206 0x2670 | 9840 4 color palette, 8 bytes OxEE | 238 0x2770 | 10096 4 color palette, 8 bytes
OxCF | 207 0x2678 | 9848 4 color palette, 8 bytes OxEF | 239 0x2778 | 10104 4 color palette, 8 bytes
OxDO | 208 0x2680 | 9856 4 color palette, 8 bytes OxFO | 240 0x2780 | 10112 4 color palette, 8 bytes
0xD1 | 209 0x2688 | 9864 4 color palette, 8 bytes OxF1 | 241 0x2788 | 10120 4 color palette, 8 bytes
0xD2 | 210 0x2690 | 9872 4 color palette, 8 bytes OxF2 | 242 0x2790 | 10128 4 color palette, 8 bytes
0xD3 | 211 0x2698 | 9880 4 color palette, 8 bytes OxF3 | 243 0x2798 | 10136 4 color palette, 8 bytes
OxD4 | 212 Ox26A0 | 9888 4 color palette, 8 bytes OxF4 | 244 Ox27A0 | 10144 4 color palette, 8 bytes
OxD5 | 213 Ox26A8 | 9896 4 color palette, 8 bytes OxF5 | 245 0x27A8 | 10152 4 color palette, 8 bytes
Oxb6 | 214 0x26B0O | 9904 4 color palette, 8 bytes OxF6 | 246 0x27B0 | 10160 4 color palette, 8 bytes
exD7 | 215 Ox26B8 | 9912 4 color palette, 8 bytes OxF7 | 247 0x27B8 | 10168 4 color palette, 8 bytes
0xD8 | 216 0x26C0 | 9920 4 color palette, 8 bytes OxF8 | 248 0x27C0O | 10176 4 color palette, 8 bytes
0xD9 | 217 0x26C8 | 9928 4 color palette, 8 bytes OxF9 | 249 0x27C8 | 10184 4 color palette, 8 bytes
OxDA | 218 0x26D0 | 9936 4 color palette, 8 bytes OxFA | 250 0x27D0 | 10192 4 color palette, 8 bytes
OxDB | 219 0x26D8 | 9944 4 color palette, 8 bytes OxFB | 251 0x27D8 | 10200 4 color palette, 8 bytes
OxDC | 220 Ox26E0 | 9952 4 color palette, 8 bytes OxFC | 252 Ox27EO | 10208 4 color palette, 8 bytes
OxDD | 221 OX26E8 | 9960 4 color palette, 8 bytes OxFD | 253 Ox27E8 | 10216 4 color palette, 8 bytes
OxDE | 222 Ox26F0 | 9968 4 color palette, 8 bytes OxFE | 254 Ox27F0 | 10224 4 color palette, 8 bytes
OxDF | 223 Ox26F8 | 9976 4 color palette, 8 bytes OxFF | 255 Ox27F8 | 10232 4 color palette, 8 bytes

42

DRAFT Gameduino Reference Manual

Sprites

Sprites are graphical objects with their own bitmaps and palettes that can be
positioned anywhere over the underlying character graphics playfield. They the
most complex part of the Gameduino’s video subsystem, using six distinct areas of
memory for control, collision detection, image data, and color palettes.

Sprites are visually positioned above the other elements of the video display, so that
opaque pixels of a sprite will obscure character graphics playfield and background
pixel information underneath. Sprite pixels may be transparent, allowing the
underlying graphical layers to show through. Each sprite is numbered from 0 to 255
(0x00 to OxFF hexadecimal), and are rendered in order, so that sprite 0 is visually
beneath sprite 1, and so on to sprite 255, which is the highest-priority visual
element on the display.

The Gameduino hardware supports 256 sprites, with some limitations:

* Sprites per Line: There is a limit of 96 sprites on a single horizontal line. If too
many sprites occupy the same line, the Gameduino hardware runs out of time to
compose the line, and some sprites may not be drawn.

* Sprite Bitmap Memory: RAM_SPRIMG contains enough memory to store 64
sprite images at the full 8-bit (256-color) pixel depth. However, two sprites can
share one bitmap in 4-bit (16-color) mode: one sprite uses the upper nybble of
the byte, while the other sprite uses the lower nybble. Similarly, in 2-bit (4-
color) mode, a total of 4 sprites can share one bitmap.

Sprite Control

Each sprite is controlled by a 32-bit sprite control word, diagrammed in Table 28:
Sprite Control Word. The hardware supports a maximum of 256 sprites, so sprite
control data occupies 1024 bytes of memory. The Gameduino has two pages of
sprite control data: one at 0x3000 to 0x33FF (1228 to 13311 decimal) and one at
0x3400 to 0x37FF (13312 to 14335 decimal) to support double buffering. The
active page is set by the SPR_PAGE register at 0x280B (10251 decimal). If
SPR_PAGE is 0, the lower bank of sprite control data is used; the upper bank is used
when SPR_PAGE is 1. The inactive page can be modified without affecting the screen
display.

Table 28: Sprite Control Word

Sprite Control Byte Offset and Control Word Contents

+0 +1 +2 +3
Sprite Control | X7XeXsXaX3X2X1Xe | P3P2P1Pe R2R1Re Xs | Y7Y6Y5YaY3Y2Y1Ye | C S5545352515e Vs

Xo-Xg: Sprite X position, 0-511 (0x000-0x1FF hexadecimal).

Po-R3: Palette mode select, 0-15 (0x0-0xF hexadecimal), see Table 29: Sprite Palette Modes.

RO-R2: Sprite rotation, 0-8; see Table 30: Sprite Rotation.

Yo-Ys: Sprite Y position, 0-511 (0x000-0x1FF hexadecimal).

C: Collision class for J/K mode, 0=] 1=K.

So-Ss: Source image bitmap, 0-63 (0x00-0x3F hexadecimal).

43

DRAFT Gameduino Reference Manual

Table 29: Sprite Palette Modes
Palette Mode Py-P3 Selected Mode Pixel

(bin) | (dec) | (hex) colors | palette | bits
0000 0 | 0x0 256 | 8| 0 A 0-7
0001 1] 0x1 256 | 8 1 B 0-7
0010 2 | Ox2 256 | 8| 2 C 0-7
0011 3 | 0x3 256 | 8| 3 D 0-7
0100 4 | 0x4 16| 4] 0 A 0-3
0101 5 | Ox5 16 | 4 1 B 0-3
0110 6 | Ox6 16| 4] 0 A 4-7
0111 7 | 0x7 16 | 4 1 B 4-7
1000 8 | 0x8 4121 0 A 0-1
1001 9 | 0x9 412 1 B 0-1
1010 10 | OxA 4 12| 0 A 2-3
1011 11 | 0xB 412 1 B 2-3
1100 12 | OxC 412 0 A 4-5
1101 13 | 0xD 412 1 B 4-5
1110 14 | OXxE 412 0 A 6-7
1111 15 | OxF 412 1 B 6-7

Palette mode: The selected palette mode number in binary, decimal, and hexadecimal.
Colors: Number of colors and bit depth in selected palette mode.

Palette: The number and letter of the palette selected for the sprite.

Pixel bits: The bit positions of the sprite image used in the selected mode.

Table 30: Sprite Rotation

\ Rotation Ro-R: Selected Mode Effect
(bin) | (dec) | (hex) [Yflip | Xflip | XYswap
000 0| Ox0 0 0 0 None
001 1] 6xl 0 0 1 Mirrored left-to-right then rotated 270°
010 2 | 0x2 0 1 0 Mirrored left to right
011 3| 0x3 0 1 1 270° clockwise rotation
100 4 | 0x4 1 0 0 Mirrored left-to-right then rotated 180°
101 5| x5 1 0 1 90° clockwise rotation
110 6 | Ox6 1 1 0 180° clockwise rotation
111 7 | 0x7 1 1 1 Mirrored left-to-right then rotated 90°

Rotation: The selected rotation number in binary, decimal, and hexadecimal.
Y flip: Flip sprite image in Y direction (top-to-bottom), 0=no, 1=yes.

X flip: Flip sprite image in X direction (left-to-right), 0=no, 1=yes.

XY swap: Swap sprite X and Y axes, 0=no, 1=yes.
Effect: Effect of selected rotation on the sprite image.

Sprite Collision Detection

The Gameduino sprite engine detects collisions while the on-screen display is being
scanned out. If a given sprite covered up (obscured pixels from) another sprite, then
a collision is detected. The results are available in COLLISION, a 256-byte area of
memory from 0x2900-0x29FF (10496-10751 decimal). This area of memory is
valid only during vertical blanking (VBLANK=1) and will read 0xFF (decimal 255) at

all other times.

Each byte of COLLISION represents the collision status of the corresponding sprite.
The byte is 0xFF (255 decimal) if the sprite did not collide with any other sprite, or

44

DRAFT Gameduino Reference Manual

contains the sprite number, 0x00-0xFE (0 to 254) of the sprite that was obscured.
Since sprite 255 (OxFF hexadecimal) is the highest-priority sprite, it can never be
obscured by another sprite. Only one collision is reported per sprite; if a sprite
collides with multiple other sprites, one of the collisions will be reported, and the
others are discarded.

If] /K collision mode is enabled, by setting the JK_MODE register to 1, collisions will
only be detected between sprites belonging to different collision classes. For
example, in] /K mode, if two sprites belong to class] (C=0), they cannot collide even
if one sprite obscures pixels from the other. Only sprites with class bits can collide.
If]/K mode is disabled, all collisions will be reported regardless of class
membership.

Sprite Image Data

Sprite images are stored in 16kbytes of RAM beginning at 0x4000 (16384 decimal).
This is enough storage for 64 image bitmaps: each sprite image is a 16x16 bitmap
where each pixel occupies a single byte. The resulting bitmap is 256 bytes, and is
diagrammed in Table 31: Sprite Image Bitmap.

Table 31: Sprite Image Bitmap
Ro Byte O et and B ap Co
M@ +0] +1] +2] +3] +a] +5] +6 [+7] +8] +9 [+A[+B] +C [+D [+E | +F

+0x00 | +0 | Po1 | Po2 | Poo | Po3 | Pesa | Pos | Pos | Po7 | Pes | Pes | Poa | Pes | Poc | Poo | Pee | Por

+0x10 | +0 | P11 | P12 | P11 | P13 | P1sa | P1s | Pig | P17 | P1s | P19 | P1ia | Pig | Pic | Pio | Pae | Pir

+0x20 | +0 | Pa1 | P22 | P22 | P23 | Paa | Pas | Pag | Pa7 | Pas | Pag | Paa | P2s | Pac | Pan | P2e | Par

+0x30 | +0 | P31 | P32 | P33 | P33 | P3a | P3s | Pse | P37 | P3s | P3o | Psa | P3g | Psc | Psp | P3e | P3r

+0x40 | +0 | Pa1 | P42 | Pao | P43 | Paa | Pas | Pac | Paz | Pag | Pao | Pan | Pag | Pac | Pap | Pae | Par

+0x50 | +0 | Ps1 | Psa | Pso | Ps3 | Psa | Pss | Pse | Ps7 | Pss | Pso | Psa | Psg | Psc | Pso | Pse | Psr

+0x60 | +0 | Pe1 | Pe2 | Peo | P63 | Pea | Pes | Pes | P67 | Pes | Peos | Pea | Pes | Pec | Pepo | Pee | Per

+0x70 | +0 | Py1 | P72 | Pyo | P73 | P7a | Pys | Pz | P77 | P7s | P79 | P7a | P7s | P7c | P7o | P7e | Psr

+0x80 | +0 | Ps1 | Psa | Pso | Ps3 | Psa | Pss | Pse | Ps7 | Pss | Pso | Psa | Pss | Psc | Psp | Pse | Psr

+0x90 | +0 | Po1 | P92 | Poo | P93 | Pos | Pos | Pog | P97 | Pos | Pog | Poa | Pog | Poc | Pop | Poe | Por

+OxAQ | +0 | Pa1 | Pa2 | Pao | Pa3 | Pas | Pas | Pac | Pa7 | Pas | Pas | Paa | Pas | Pac | Pap | Pae | Par

+0xBO | +0 | Ps1 | Ps2 | Pso | Ps3 | Pea | Pes | Pee | Ps7 | Pes | Peo | Pea | Pes | Pec | Peo | Pse | Psr

+0xCO | +0 | Pc1 | Pca | Pco | Pc3 | Pca | Pcs | Pce | Pc7 | Pcs | Pco | Pca | Pce | Pcc | Peo | Pce | Pcr

+0xDO | +0 | Po1 | Pp2 | Poo | Po3 | Ppa | Pos | Poe | Po7 | Pos | Ppo | Poa | Pos | Poc | Poo | Poe | Por

+OXEQ | +0 | Pe1 | Pea | Peo | Pe3 | Pea | Pes | Pee | Pe7 | Pes | Peo | Pea | Pes | Pec | Peo | Pee | Per

+OXFO | +O | Pr1 | Pr2 | Pro | Pr3 | Pra | Prs | Pre | Pr7 | Prs | Pro | Pra | Pr | Prc | Prp | Pre | Prr

Pxy: Pixel data for position X,Y, where X and Y are 0x0-0xF (0 to 15 decimal).

Up to 256 different sprite images are supported, by allowing sprites to share a
bitmap. In 16-color (4 bit per pixel) mode, each sprite bitmap can contain two
complete sprite images, one in the high nybble (bits 4-7) and one in the low nybble
(bits 0-3). In 4-color (2 bit per pixel) mode, each sprite bitmap can contain four
complete sprite images. Each image occupies 2 of the 8 bits. See Table 28: Sprite
Control Word and Table 29: Sprite Palette Modes for more information.

Sprite Palettes

There are a total of eight sprite palettes available on the Gameduino: 4 256-color
palettes, plus 2 16-color and 2 4-color palettes. All eight palettes are fully

45

DRAFT Gameduino Reference Manual

independent, and there is no restriction, other than available sprite image data
memory, on mixing sprite modes or palettes.

256-Color Palettes: The four 256-color palettes are each 512 bytes long, and are
located at RAM_SPRPAL starting at 0x3800 (14336 decimal). The structure of
RAM_SPRPAL is diagrammed in Table 32: RAM_SPRPAL Memory Map, while each
palette consists of 256 color entries as described in Table 37: Palette Entry Format.

Table 32: RAM_SPRPAL Memory Map

DO Palette Addre eng O C
alternate (hex) | (dec) | (hex) | (dec)
RAM_SPRPAL | PALETTE256A | @ | A | 0x3800 | 14336 | 0x200 512 | 256-color palette A
PALETTE256B | 1 B Ox3A00 | 14848 | 0x200 512 | 256-color palette B
PALETTE256C | 2 | C | Ox3C00 | 15360 | 6x200 512 | 256-Color palette C
PALETTE256C | 3 D Ox3F00 | 15872 | 0x200 512 | 256-Color palette D

16-Color Palettes: There are two 16-color palettes, each 32 bytes long, located at
PALETTE16 starting at 0x2840 (10304 decimal). The structure of PALETTE16 is
diagrammed in Table 33: PALETTE16 Memory Map, while each palette consists of
16 color entries as described in Table 37: Palette Entry Format, and detailed in
Table 34: 16-Color Sprite Palette.

Table 33: PALETTE16 Memory Map

DO a Addre eng O
(hex) (dec) | (hex) | (dec)
PALETTELI6A | @ | A | 0x2840 | 10304 | 0x20 32 | 16-Color sprite palette A
PALETTE16B | 1 | B | 0x2860 | 10336 | 0x20 32 | 16-Color sprite palette B

Table 34: 16-Color Sprite Palette
Color

Entry Offset

Byte Offset

I3ilew'll (hex) | (dec) | +0 +1
0 +0x00 +0 | G2G1GeBaB3B2B1Be | A R4R3R2R1R0G4G3
1 +0x02 +2 | 62G1GeBaB3B2B1Be | A RsR3R2R1R0G4G3
2 +0x04 +4 | G261GoB4B3B2B1Bo | A RsR3R2R1ReG4G3
3 +0x06 +6 | G26G1GeBaB3B2B1Be | A R4R3R2R1R0G4G3
4 +0x08 +8 | G2G1GoB4B3B2B1Be | A R4R3R2R1ReG4G3
5 +OX0A +10 | G2G1GeB4B3B2B1Be | A RaR3R2R1ReG4G3
6 +0x0C +12 | G,G1GoB4B3B2B1Bo | A R4R3R2R1ReG4G3
7 +Ox0E +14 | G,G1GoB4B3B2B1Be | A R4R3R2R1ReG4G3
8 +0x10 +16 | G2G1GeB4B3B2B1Be | A R4R3R2R1R0G4G3
9 +0x12 +18 | G2G1GoB4B3B2B1Be | A R4aR3R2R1ReG4G3
10 +0x14 +20 | G2G1GeB4B3B2B1Be | A RaR3R2R1R0G4G3
11 +0x16 +22 | G2G1GoB4B3B2B1Bg | A R4R3R2R1ReG4G3
12 +0x18 +24 | G2G1GeB4B3B2B1Be | A RaR3R2R1R0G4G3
13 +0x1A +26 | GG1GoB4B3B2B1Be | A R4aR3R2R1ReG4G3
14 +0x1C +28 | G,G1GoB4B3B2B1Bo | A R4R3R2R1ReG4G3
15 +0Ox1E +30 | G2G1GoB4B3B2B1Be | A R4R3R2R1ReG4G3

46

DRAFT Gameduino Reference Manual

A: Alpha channel color information, 0=opaque, 1=transparent.
Ro-R4: Red channel color information, 0-32; ignored when A=1.
Bo-B4: Green channel color information, 0-32; ignored when A=1.
Bo-B4: Blue channel color information, 0-32; ignored when A=1.

4-Color Palettes: There are two 4-color palettes, each 8 bytes long, located at
PALETTE4 starting at 0x2880 (10368 decimal). The structure of PALETTE4 is
diagrammed in Table 35: PALETTE4 Memory Map, while each palette consists of 16
color entries as described in Table 37: Palette Entry Format, and detailed in Table
36: 4-Color Sprite Palette.

Table 35: PALETTE4 Memory Map

bo Palette Addre AN O onte

(hex) (dec) | (hex) | (dec)
PALETTE4A | @ | A | Ox2880 | 10368 | Ox8 8 | 4-Color sprite palette A
PALETTE4B | 1 B Ox2888 | 10376 | Ox8 8 | 4-Color sprite palette B

Table 36: 4-Color Sprite Palette

olo Bvte Offse
Uity +0 +1

0 +0 G2G1GeB4B3B2B1Bo | A R4R3R2R1ReG4G3

1 +2 G2G1GeB4B3B2B1Bo | A RaR3R2R1ReG4G3

2 +4 G2G1GeB4B3B2B1Be | A R4R3R2R1ReG4G3

3 +6 G2G1GeB4B3B2B1Bo | A R4R3R2R1ReG4G3

A: Alpha channel color information, 0=opaque, 1=transparent.
Ro-R4: Red channel color information, 0-32; ignored when A=1.
Bo-Ba4: Green channel color information, 0-32; ignored when A=1.
Bo-Ba: Blue channel color information, 0-32; ignored when A=1.

Color

The Gameduino uses a number of different formats to represent color values: 8-bit
logical color space values used by the GD Library, 5-bit color values used by the
hardware, and 3-bit color values combined with dithering to generate video output
to the display. Table 38: Color Space shows the relationship between these three
color spaces.

Logical Color

The GD Library implements a 24-bit RGB888 logical color space. It provides 8 bits
per channel via an RGB() macro that accepts one byte of color data for each channel.
The macro discards the least significant 3 bits of each color channel, and returns a
15-bit hardware representation of the color, with the alpha channel set to 0
(opaque).

Hardware Color

Internally, the Gameduino uses an ARGB1555 color format in its palettes and color
registers. Color values are stored in a single 16-bit word, with one bit of alpha
(transparency) information, and 5 bits each of red, green, and blue channel

47

DRAFT Gameduino Reference Manual

information. The lower (least significant) byte of the word contains the blue
channel data and the least significant bits of the green channel, while the upper byte
contains the most significant bits of the green channel, all of the red channel, and the
alpha channel. A standard color value is diagrammed below:

Table 37: Palette Entry Format

‘ Address +0 +1
ARGB1555 Color Data Template | G2G1GeB4B3B2B1Be | A R4R3R2R1R0G4G3
ARGB1555 Display Colors G2G1GeB4B3B2B1Bo | ® R4R3R2R1ReG4G3
ARGB1555 Transparent XXXXXXXX [1XXXXXXX

A: Alpha channel color information, 0=opaque, 1=transparent.
Ro-R4: Red channel color information, 0-32; ignored when A=1.
Bo-B4: Green channel color information, 0-32; ignored when A=1.
Bo-Ba: Blue channel color information, 0-32; ignored when A=1.

As shown above, the Gameduino implements an alpha (transparency) color channel
in hardware. Transparent values are a special case of the standard color value:
when the most significant bit is set, the low 15 bits containing the red, green, and
blue channels in the color value are ignored. The result is values of 0x8000-0xFFFF
(decimal 32768 through 65535), are transparent.

By convention, 0x8000 is the standard transparent color value. However, storing
0x80 (decimal 128) in the high byte of a color word is sufficient to make a color
entry transparent, regardless of the contents of the low byte.

The BG_COLOR register ignores alpha channel information, because the background
color is the bottom-most color plane. There is no lower-priority video information
to show through a transparent background color, so all color values are treated as
opaque. Similarly, pixel data read back through the SCREENSHOT memory area are
always opaque, since they represent the final color values output to the display.

Output Color

The Gameduino display output has only 3 bits of resolution per channel. Only the
colors where the three least significant bits are all zero are output directly. The
other colors, where the least significant bits are nonzero, are approximated using a
2x2 dithering algorithm in the video output hardware.

Table 38: Color Space

(hex) (dec) (bin) (hex) (dec) (bin) (hex) (dec) (bin)
0x00 0 00000000 0x00 0 00000 0x00 0 000
0x08 8 00001000 0x01 1 00001 0x00 0 000
0x10 16 00010000 0x02 2 00010 0x00 0 000
0x18 24 00011000 0x03 3 00011 0x00 0 000
0x20 32 00100000 0x04 4 00100 0x01 1 001
0x28 40 00101000 0x05 5 00101 0x01 1 001
0x30 48 00110000 0x06 6 00110 0x01 1 001
0x38 56 00111000 0x07 7 00111 0x01 1 001
0x40 64 01000000 0x08 8 01000 0x02 2 010

48

DRAFT Gameduino Reference Manual

3-b ogical Colo b 3 are Colo bit Outp olo
(hex) | (dec) (bin) | (hex) | (dec)| (bin)| (hex)| (dec)| (bin)
0x48 72 01001000 0x09 9 01001 0x02 2 010
0x50 80 01010000 Ox0A 10 01010 0x02 2 010
0x58 88 01011000 0x0B 11 01011 0x02 2 010
0x60 96 01100000 0x0C 12 01100 0x03 3 011
0x68 104 01101000 0x0D 13 01101 0x03 3 011
0x70 112 01110000 Ox0E 14 01110 0x03 3 011
0x78 120 01111000 Ox0F 15 01111 0x03 3 011
0x80 128 10000000 0x10 16 10000 0x04 4 100
0x88 136 10001000 6x11 17 10001 0x04 4 100
0x90 144 10010000 0x12 18 10010 0x04 4 100
0x98 152 10011000 0x13 19 10011 0x04 4 100
OxA0 160 10100000 ox14 20 10100 0x05 5 101
OxA8 168 10101000 0x15 21 10101 0x05 5 101
0xBO 176 10110000 0x16 22 10110 0x05 5 101
0xB8 184 10111000 0x17 23 10111 0x05 5 101
0xCo 192 11000000 0x18 24 11000 0x06 6 110
0xC8 200 11001000 0x19 25 11001 0x06 6 110
0xDO 208 11010000 Ox1A 26 11010 0x06 6 110
0xD8 216 11011000 0x1B 27 11011 0x06 6 110
OxEO 224 11100000 ox1C 28 11100 0x07 7 111
OxE8 232 11101000 0x1D 29 11101 0x07 7 111
OxFO 240 11110000 Ox1E 30 11110 0x07 7 111
OxF8 248 11111000 Ox1F 31 11111 0x07 7 111

Lines shaded in grey are dithered on output.

Audio

The Gameduino implements two independent audio systems: an additive synthesis
based on the summation of separate waveforms, and a sample playback mechanism.

Sound Synthesis Registers

The Gameduino additive sound synthesis system is based on 64 sound control

words and is supplemented by a ring modulation system.

Voice Control

Sound control data is located at VOICES, 0x2A00 (10752 decimal). Each sound
control word consists of 32 bits that specify one component of the final sound to be

output.

Table 39: VOICES Memory Map

Add Byte (d Co 0 ord Co

(hex) | (dec) +0 +1 +2 +3
0O | Ox2A00 | 10752 | F7FeFsFaF3F2F1Fe | W FeEFpFcFBFAF9Fs | L7LsLsLalsL2Lile | R7ReRsRaR3R2R1Re
1| Ox2A04 | 10756 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFaAF9Fs | L7LslLsLalsl2Lile | R7ReRsR4aR3R2R1Re
2 | Ox2A08 | 10760 | F7FeFsFaF3F2F1Fe | W FeFpFcFsFAF9Fs | L7LsLsLalsL2Lile | R7ReéRsRaR3R2R1Re
3 | 0x2A0C | 10764 | F7FsFsF4F3F2F1Fe | W FeFpFcFsFaFoFs | L7LeLsLalslalile | R7ReRsRaR3R2R1R0
4 | Ox2A10 | 10768 | F7FeFsF4F3F2F1Fe | W FeFoFcFsFaFoFs | L7LeLsLalslalile | R7ReRsR4R3R2R1Re
5 | Ox2A14 | 10772 | F7FeFsFaF3F2F1Fe | W FeFpFcFsFAF9Fs | L7LsLsLalsL2Lile | R7ReéRsRaR3R2R1Re
6 | Ox2A18 | 10776 | F7FeFsFaF3F2F1Fe | W FeFpFcFsFaFoFs | L7LeLsLalsl2Lile | R7R6RsR4R3R2R1Re

49

DRAFT Gameduino Reference Manual

Add Byte O and Co 0 ord Co

(hex) | (dec) +0 +1 +2 +3
7 | Ox2A1C | 10780 | F7FeFsF4F3F2F1Fe | W FeFpFcFsFaF9Fs | L7LeLsLalsL2L1le | R7ReRsRaR3R2R1Re
8 | Ox2A20 | 10784 | F7FeFsFaF3F2F1Fe | W FeFpFcFsFAF9Fs | L7LsLsLalsL2LiLe | R7ReéRsRaR3R2R1Re
O | Ox2A24 | 10788 | F7FeFsFaF3F2F1Fe | W FeFpFcFeFaF9Fs | L7LsLsLalsLaLile | R7ReéRsRaR3R2R1Re
10 | ©x2A28 | 10792 | F7FeFsFaF3F2F1Fe | W FeFoFcFsFaFoFs | L7LsLsLal3l2Lile | R7R6RsR4R3R2R1Re
11 | Ox2A2C | 10796 | F7FeFsF4F3F2F1Fe | W FeFpFcFeFaF9Fs | L7LeLsLal3laLile | R7R6RsRaR3R2R1Re
12 | Ox2A30 | 10800 | F7FeFsFaF3F2F1Fe | W FeFoFcFsFaFoFs | L7LsLsLal3l2Lile | R7RsRsR4R3R2R1Re
13 | Ox2A34 | 10804 | F7FeFsFaF3F2F1Fe | W FeFpFcFsFAF9Fs | LyLelsLalsl2Lile | R7R6RsR4R3R2R1Re
14 | Ox2A38 | 10808 | F7FeFsF4F3F2F1Fe | W FeFpFcFeFaFoFs | L7LeLsLal3laLile | R7R6RsRaR3R2R1Re
15 | 6x2A3C | 10812 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFaFoFs | L7LslLsLal3laLile | R7R6Rs5R4R3R2R1Re
16 | Ox2A40 | 10816 | F7FsFsFaF3FaF1Fo | W FeFpFcFsFaFoFs | L7LeLsLalslalile | R7RéRsR4aR3R2R1Re
17 | Ox2A44 | 10820 | F7FeFsFaFsFaF1Fe | W FeFpFcFsFAF9Fs | LyLeLsLalslaLile | R7ReRsR4R3R2R1Re
18 | Ox2A48 | 10824 | F7FsFsFaF3F2F1Fo | W FeFoFcFsFaFoFs | L7LelsLalslalile | R7ReRsR4R3R2R1Re
19 | Ox2A4C | 10828 | F7FeFsF4F3F2F1Fe | W FeFpFcFeFaFoFs | L7LeLsLal3laLile | R7R6R5RaR3R2R1Re
20 | Ox2A50 | 10832 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFaF9Fs | L7LsLsLalsl2Lile | R7ReRsR4R3R2R1Re
21 | Ox2A54 | 10836 | F7FeFsF4F3F2F1Fe | W FeFoFcFsFaF9Fs | L7LeLsLalsl2L1le | R7ReRsRaR3R2R1Re
22 | Ox2A58 | 10840 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFAF9Fs | L7LeLsLal3l2Lile | R7R6RsR4aR3R2R1Re
23 | Ox2A5C | 10844 | F7FeFsFaF3F2F1Fe | W FeFoFcFBFAF9oFs | L7LeLsLal3l2Lile | R7R6RsR4R3R2R1Re
24 | Ox2A60 | 10848 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFaF9Fs | L7LeLsLalslaLile | R7R6RsRaR3R2R1Re
25 | Ox2A64 | 10852 | F7FeFsFaF3F2F1Fe | W FeFpFcFsFaFoFs | L7LelsLalslalilo | R7ReRsRaR3R2R1Re
26 | Ox2A68 | 10856 | F7FsFsFaF3F2F1Fe | W FeFoFcFBFaF9Fs | L7LeLsLalslaLile | R7RéRsRaR3R2R1Re
27 | Ox2A6C | 10860 | F7FeFsF4F3F2F1Fe | W FeFoFcFsFaF9Fs | L7LeLsLalsl2L1le | R7ReRsRaR3R2R1Re
28 | Ox2A70 | 10864 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFaF9oFs | L7LeLsLal3laLile | R7ReRsR4R3R2R1Re
29 | Ox2A74 | 10868 | F7FeFsF4F3F2F1Fe | W FeFoFcFsFaF9Fs | L7LeLsLalsL2L1le | R7ReRsRaR3R2R1Re
30 | Ox2A78 | 10872 | F7FeFsFaF3F2F1Fe | W FeFoFcFsFaFoFs | L7LeLsLalsl2L1le | R7ReRsRaR3R2R1Re
31 | Ox2A7C | 10876 | F7FeFsF4F3F2F1Fe | W FeFpFcFsFaF9Fs | L7LeLsLalsL2L1le | R7ReRsRaR3R2R1Re
32 | Ox2A80 | 10880 | F7FsFsFaF3F2F1Fe | W FeFoFcFBFaF9Fs | L7LeLsLalslaLile | R7RéRsRaR3R2R1Re
33 | 0x2A84 | 10884 | F7FeFsFaF3F2F1Fe | W FeFoFcFsFaFoFs | L7LelsLalslalilo | R7ReRsRaR3R2R1Re
34 | Ox2A88 | 10888 | F7FeFsFaF3F2F1Fe | W FeFoFcFsFaF9Fs | L7LeLsLalslaLile | R7R6RsRaR3R2R1Re
35 | Ox2A8C | 10892 | F7FeFsFaF3F2F1Fe | W FeFoFcFeFaFoFs | L7LeLsLalsloLile | R7R6RsRaR3R2R1Re
36 | Ox2A90 | 10896 | F7FeFsFaF3F2F1Fe | W FeFoFcFsFaF9Fs | L7LeLsLalsL2L1le | R7ReRsRaR3R2R1Re
37 | Ox2A94 | 10900 | F7FeFsF4F3F2F1Fe | W FeFoFcFsFaF9Fs | L7LeLsLalsL2L1le | R7ReRsRaR3R2R1Re
38 | Ox2A98 | 10904 | F7FeFsFaF3F2F1Fe | W FeFoFcFBFAF9Fs | L7LeLsLal3l2Lile | R7R6RsR4R3R2R1Re
39 | Ox2A9C | 10908 | F7FeFsF4F3F2F1Fe | W FeFoFcFsFaF9Fs | L7LeLsLalsl2L1le | R7ReRsRaR3R2R1Re
40 | Ox2AA0Q | 10912 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFaF9Fs | L7LslLsLal3l2Lile | R7R6RsR4R3R2R1Re
41 | Ox2AA4 | 10916 | F7FeFsFaF3F2F1Fo | W FeFoFcFsFaFoFs | L7LeLsLalslalile | R7RéRsRaR3R2R1Re
42 | 0x2AA8 | 10920 | F7FeFsF4F3F2F1Fe | W FeFoFcFsFaFoFs | L7LeLsLalslalile | R7ReRsRaR3R2R1R0
43 | Ox2AAC | 10924 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFaF9Fs | LyLslLsLalsl2Lile | R7R6RsR4R3R2R1Re
44 | Ox2ABO | 10928 | F7FeFsFaF3F2F1Fe | W FeFpFcFeFaFoFs | L7LeLsLal3l2Lile | R7ReRsR4aR3R2R1Re
45 | Ox2AB4 | 10932 | F7FeFsFaF3F2F1Fe | W FeFpFcFsFaFoFs | L7LeLsLalsl2Lile | R7ReRsR4R3R2R1Re
46 | Ox2AB8 | 10936 | F7FeFsFaF3F2F1Fe | W FeFoFcFsFaFoFs | L7LsLsLalsl2Lile | R7R6RsR4R3R2R1Re
47 | Ox2ABC | 10940 | F7FeFsFaF3F2F1Fe | W FeFpFcFeFaFoFs | L7LeLsLal3l2Lile | R7ReRsR4aR3R2R1Re

50

DRAFT Gameduino Reference Manual

Add Byte O and Co 0 ord

(hex) | (dec) +0 +1 +2 +3
48 | Ox2ACO | 10944 | F7FeFsFaFsF2F1Feo | W FeFpFcFsFaFoFs | LyLeLsLalslalile | R7R6RsRaR3R2R1Re
49 | 0x2AC4 | 10948 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFaFoFs | LyLslLsLalsl2Lile | R7R6R5sR4R3R2R1Re
50 | Ox2AC8 | 10952 | F7FeFsFaF3F2F1Fe | W FeFoFcFsFaFoFs | L7LeLsLalslaLile | R7R6RsRaR3R2R1Re
51 | ©x2ACC | 10956 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFaAF9Fs | L7LsLsLalsl2Lile | R7ReRsR4R3R2R1Re
52 | Ox2ADO | 10960 | F7FeFsFaF3F2F1Fe | W FeFoFcFBFAF9oFs | L7LeLsLal3l2Lile | R7ReRsR4R3R2R1Re
53 | 6x2AD4 | 10964 | F7FeFsFaF3F2F1Fo | W FeFoFcFsFaFoFs | L7LelLsLalslalile | R7ReRsRaR3R2R1Re
54 | Ox2AD8 | 10968 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFAF9Fs | L7LeLsLal3l2Lile | R7R6RsR4R3R2R1Re
55 | Ox2ADC | 10972 | F7FeFsFaF3F2F1Fe | W FeFoFcFsFaFoFs | L7LeLsLalsL2L1le | R7ReRsRaR3R2R1Re
56 | Ox2AEQ | 10976 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFAF9Fs | L7LeLsLalslaLile | R7R6RsRaR3R2R1Re
57 | Ox2AE4 | 10980 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFAF9Fs | LyLeLsLal3l2Lile | R7R6RsR4aR3R2R1Re
58 | Ox2AE8 | 10984 | F7FeFsFaF3F2F1Fe | W FeFoFcFBFAF9oFs | L7LeLsLal3l2Lile | R7R6RsR4aR3R2R1Re
59 | Ox2AEC | 10988 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFaF9Fs | L7LeLsLalslaLile | R7R6RsRaR3R2R1Re
60 | Ox2AF0O | 10992 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFAF9Fs | L7LeLsLal3l2Lile | R7R6RsR4R3R2R1Re
61 | Ox2AF4 | 10996 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFAF9Fs | L7LsLsLalsl2Lile | R7ReRsR4R3R2R1Re
62 | Ox2AF8 | 11000 | F7FeFsF4F3F2F1Fe | W FeFoFcFsFaFoFs | L7LeLsLalsL2L1le | R7ReRsRaR3R2R1Re
63 | Ox2AFC | 11004 | F7FeFsFaF3F2F1Fe | W FeFpFcFBFAF9Fs | L7LeLsLal3l2Lile | R7R6RsR4aR3R2R1Re

V: Voice number, 0-64 (0x00-0x40 hexadecimal).

Fo-Fe: Frequency, in units of %4Hz (so 4=1Hz or 1760=440Hz).
W: Waveform, O0=sine, 1=noise.

Lo-L7: Left volume, 0-255 (0x00-0xFF hexadecimal).

Ro-R7: Right volume, 0-255 (0x00-0xFF hexadecimal).

Ring Modulator

In addition to simple additive synthesis, the Gameduino’s audio output system
implements a ring modulator. Writing values to the RING_MOD register at 0x2814
(10260 decimal) control the ring modulator. Writing 64 (0x40) to the RING_MOD
register disables the feature. Writing any lower value enables the ring modulator.
The value stored in RING_MOD determines which voice control register is used as
the ring modulator control. All lower-numbered voices are modulated, while
higher-numbered voices are unaffected. For example, writing 32 (0x20
hexadecimal) to RING_MOD enables the ring modulator. Voice control word 32
controls the modulator, and voices 0-31 are modulated, while voices 33-64 are not.

O R e
DO AQd

(hex) (dec)

RING_MOD | RW | 6x2814 | 10260 | 1 | Modulator voice, affects all lower voices | 0x40

Sample Registers

The Gameduino has the ability to play back stereo audio wave data using the
SAMPLE_L and SAMPLE_R registers. Each register accepts a signed 16-bit integer
reflecting the sample. The Gameduino updates audio samples every 64 cycles of it’s
50MHz clock, corresponding to an update frequency of 781.25kHz, so values loaded
into these registers are reflected on the audio output channels within 1.28ps.

51

DRAFT Gameduino Reference Manual

Table 40: SAMPLE_L and SAMPLE_R Registers

bo Addre eng Byte Offset and Register Conte De
(hex) (dec) | (hex) | (dec) +0 +1
SAMPLE L | RW | 0x2810 | 10256 | Ox2 2 | LyLelslglslaolale | LisLiglislioliilielols | OxQ0QO
SCROLL R | RW | @x2812 | 10258 | Ox2 2 | R7ReRsR4R3R2R1Re | R15R14R13R12R11R10R9Rs | Ox0000

Lo-L1s: Left audio channel sample value, 16-bit signed integer (L1s is the sign bit).
Ro-Ris: Right audio channel sample value, 16-bit signed integer (Ris is the sign bit).

52

DRAFT Gameduino Reference Manual

J1 Coprocessor

The Gameduino includes a J1 Forth-based CPU as a coprocessor. The J1 is a
minimalist but fully functional processor that has full access to the Gameduino’s
address space, and a few additional registers that are not accessible to the Arduino.
The J1 CPU also executes much faster than the Arduino, and can move considerably
more data than can fit through the SPI interface.

Coprocessor Interface

The Gameduino coprocessor interface consists of a control register, a microcode
block, and a communications block that are shared between the Arduino and the
COprocessor.

Coprocessor Control

The J1_RESET register allows the Arduino (or other host microcontroller) to stop
and start the]J1 coprocessor. Writing 0x01 to this register halts and resets the
coprocessor, while 0x00 releases the coprocessor. Following a reset, the J1 begins
executing code starting at J1_CODE, 0x2B00 (11008 decimal). The remaining seven
bits of the register are unused and should be set to 0 for compatibility.

Table 41: J1_RESET Register
\ Symbol Address \ Length \ Contents \ Default

(hex) (dec) | (hex) | (dec)
J1 RESET | RW | 0x2809 | 10249 | 0x1 I | XXXXXXXRe | 0x0000
Ro: Coprocessor control: 1=run, O=halt and reset.

Coprocessor Microcode

J1_CODE, a 256-byte block of Gameduino RAM from 0x2B00-0x2BFF (decimal
11008 through 11263) is set aside for J1 instructions. This is the only area of
memory that the J1 can use to fetch instructions. J1 instructions are 16-bit words,
so J1_CODE can contain only 128 instructions. However the coprocessor can read
and write data from any location in the Gameduino address space, so clever
programs can copy overlays from other areas of the J1 address space into J1_CODE.
Unused sprite bitmap memory in the 16 kbyte RAM_SPRIMG block is a good place to
locate J1 overlays.

Table 42: J1_CODE Memory Ma
oo Addre eng onte Defa
(hex) (dec) | (hex) (dec)

J1_CODE | RW | 6x2B00 | 11008 | 6x0100 | 256 | 128 2-byte J1 instructions | 128 x 0x0000

Coprocessor Communications Block

An otherwise-unused 48-byte block of RAM is set aside for use as a inter-processor
communications area so that Arduino and J1 code can exchange data. The block is
labeled COMM and runs from 0x2890 to 0x28BF (10384 to 10431 decimal). There

53

DRAFT Gameduino Reference Manual

is no standard structure to COMM - it is free to be defined by user programs, and
may include data that is shared between the Arduino sketch and the J1 code, or
private data structures manipulated by the J1. However, 48 bytes is not a lot of
space for data structures. Unused sprite bitmap memory in the 16-kbyte
RAM_SPRIMG block is a good place to locate large data structures that don’t fit into
COMM.

Table 43: COMM Memory Map
DO Addre eng onte Defa
(hex) (dec) | (hex) | (dec)

COMM RW | 0x2890 | 10384 | 0x30 48 | 48 bytes shared memory | 6x00

Coprocessor-Only Registers

A few Gameduino registers are only available to J1 programs - they cannot be read
or written by the host microcontroller via the SPI interface. Because they are so
tightly tied to the J1 coprocessor, these registers can also be read and written via a
16-bit data path, so that load and store instructions write entire words (rather than
writing just one byte, as is the case with loads or stores to ordinary Gameduino
registers).

Current Raster Line: This is a read-only counter that increments as the screen
display is generated. The register is incremented immediately after the last pixel of
the line is composited, so changes in YLINE can be used to detect when it is safe to
modify on-screen objects and control registers without causing visual glitches. J1
code has at least 45 cycles long, and up to 1677 cycles, before composition of the
next raster line begins. The time taken depends on the number of sprites that must
be composited onto the line: the minimum time of 45 cycles corresponds to the
maximum of 96 sprites per line. Raster line 0 is the top-most visible line of the
display, and line 299 is the bottom-most visible line. Waiting for YLINE>299 will
detect the start of vertical blanking. However, YLINE is undefined during vertical
blanking, and may take on unpredictable values, so YLINE data can be used to
estimate the amount of time left in the vertical blanking interval.

Table 44: YLINE Register
DO Addre eng

(hex) (dec) (hex]. (dec)

YLINE R | Ox8000 | 32768 | 0x2 2 [XXX XXX X YsY7Y6Ys5YaY3Y2Y1Ye

Yo-Ys: Current raster line, 0x0000 to 0x14C (0 to 332).

FPGA ICAP Port: A set of 6 registers that allow |1 programs to directly access the
internal configuration access port (ICAP) of the Xilinx field-programmable gate
array (FPGA) used to implement the Gameduino. The ICAP port is not normally used
for game programming, and use of these registers could alter the Gameduino’s
operation. Consult the Xilinx User Guide for details on how to use this port. The
manual can be found on the Xilinx site at:
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf

54

DRAFT Gameduino Reference Manual

Table 45: FPGA ICAP Registers

bo Addre eng Register Conte
(hex) (dec) | (hex) | (dec)
ICAP_ O | R 0x8002 | 32770 | Ox2 2 | XXX X XXX X 0706050403020100
ICAP W | 0x8006 | 32774 | Ox2 2 | XXX X X Weo Eo Co I716I5I4I3I,I110

00-07: ICAP output byte, 0x00-0xFF (0 to 255 decimal).
Io-17: ICAP input byte, 0x00-0xFF (0 to 255 decimal).
Wo: ICAP write enable, O=write and 1=read.

Eo: ICAP select (chip enable): 0=enable and 1=disable.
Co: ICAP interface clock.

Programmable Frequency Generator: A programmable frequency generator is
available to the]J1 coprocessor using the FREQHZ and FREQTICK registers. The
FREQHZ register sets the desired frequency, from 1Hz (0x0001) to 65,535Hz
(OxFFFF); 8000Hz (0x1F40) is the default. The FREQTICK register increments by
one at the specified frequency, allowing the J1 to count at a precise rate. There is no
way to set or reset FREQTICK, it merely counts up at the specified rate. When
FREQTICK reaches 0xFF, it rolls over to 0x00 the next time it increments. Setting
FREQHZ to 0x0000 programs OHz and stops incrementing FREQTICK.

Table 46: FREQHZ and FREQTICK Registers

bO Adare eng Register Conte Defa
(hex) (dec) | (hex) | (dec)
FREQHZ W | Ox800A | 32778 | 0x2 2 | Frequency setting, 1Hz to 65535Hz | 0x1F40
FREQTICK | R | ©x800C | 32780 | 0x1 1 | Counter increments at CLOCKHZ 0x00

Pin 2 Control: Two coprocessor-only registers, in combination with the shard
IOMODE register, control pin 2 of the Gameduino’s Arduino hardware interface. The
shared IOMODE register is used to assign pin 2 to one of two functions, or to disable
it entirely. When IOMODE is set to 0x4A (decimal 74 or ASCII “J”), the pin is
controlled by the coprocessor-only P2_V and P2_DIR registers.

Table 47: P2 1/0 Registers

bo Addre eng Register Conte
(hex) (dec) | (hex) | (dec)
P2_V RW | Ox800E | 32782 | Ox2 2 [XXXXXXXXXXXXXXXVe
P2_DIR | R 0x8010 | 32784 | Ox2 2 [XXXXXXXXXXXXXXX Do

Vo: Arduino interface pin 2 value, 0=low and 1=high.
Do: Pin 2 direction, O=output, 1=input.

When used as an output, J1 code running on the Gameduino can signal the host
microcontroller on pin 2 of the interface. This is a digital pin on Arduino boards,
and it can be used as an interrupt. J1 code on the Gameduino can use this interrupt
to trigger Arduino code that must run synchronously with the Gamduino state. For
example, the J1 can trigger an interrupt when vertical blanking is detected, and the
Ardiuno’s interrupt service routine can update on-screen objects without causing
visual glitches in the video output.

55

DRAFT Gameduino Reference Manual

When used as an input, pin 2 can either be connected directly to a digital signal that
the J1 code monitors, or it can be used as an alternate signaling path between the
host microcontroller and the Gameduino. The J1 processor doesn’t support
interrupts, so code that monitors pin 2 will need to poll the state of the pin to detect
signals.

Random Number: The J1 can access a high-quality random number generator via
the RANDOM register. The value in this read-only register is based on the
Gameduino’s built-in white noise generator. The hardware continuously updates
this value so that every time it is read, the register produces a new random value.

Table 48: RANDOM Register
DO Ad e eng

(hex) (dec) (hex]. (dec)

RANDOM | R | 0x8012 | 32786 | Ox2 2 | 16-bit random number

Clock: A clock cycle counter is available in the CLOCK register. This register counts
the number of 50MHz J1 clock cycles since the Gameduino was reset. When the
count reaches 0xFFFF (65535 decimal) it wraps around to 0x0000.

Table 49: CLOCK Register

bo Addre eng Register Conte
(hex) (dec) | (hex) | (dec)
CLOCK | R | 0x8014 | 32788 | 0x2 2 | Clock cycle count, 0x0000 to OxFFFF

SPI Flash Memory: When the shared IOMODE register is set to 0x46 (decimal 70 or
ASCII “F”), the J1 CPU can use the FLASH registers to access the Gameduino’s
onboard flash memory. By directly manipulating a four-line bus, the J1 can initiate
SPI transactions to read or write memory locations under program control.

This memory stores configuration data that is loaded into the Xilinx FPGA at boot-up
time; changing data stored in this memory could permanently alter the functioning
of the Gameduino.

Table 50: FLASH SPI Registers

DO A dare eNno Rnogo o 0 a

(hex) (dec) | (hex) | (dec)
FLASH MISO | R 0x8016 | 32790 | 0x2 2 | XX XXXXXXXXXXXXXD0e
FLASH_MOSI W | 0x8018 | 32792 | 0x2 2 [XXXXXXXXXXXXXXXTIo
FLASH_SCK W | Ox801A | 32794 | 0x2 2 [XXXXXXXXXXXXXXXCo
FLASH SSEL | W | 0x801C | 32796 | 0x2 2 [XXXXXXXXXXXXXXXSo

Oo: SPI MISO (master-in/slave-out) line input, O=low and 1=high.

Io: SPI MOSI (master-out/slave-in) signal to output, 0=low and 1=high.

Co: SPI SCK (serial clock) signal to output, 0=low and 1=high.

So: SPI SSEL (slave select, also SS or SEL) signal to output, O=low and 1=high.

J1 Architecture and Programming

The J1 is a stack-based microprocessor optimized to execute Forth code; in fact its
instruction set includes 21 instructions that directly implement ANS Forth words.

56

DRAFT Gameduino Reference Manual

The logical architecture of the processor is shown in Error! Reference source not
found.. Itis designed to execute Forth-like stack-based languages, and the most
prominent features of the |1 are its two stacks: a data stack that is used by ALU
operations, and a return stack that is primarily used to hold subroutine return
addresses. Each stack can hold up to 32 entries, each entry containing a 16-bit
word. A few stack entries have specific names, that are used to describe J1
operations: the top of the data stack is T (top of stack), while the next item on the
data stack is N (next on stack); the top of the return stack is R (return address).

The basic stack operations are push and pop.

* Push: Pushing a value onto a stack saves it for later use. When words are
pushed onto a stack, the new data becomes the top of the stack, and each
element of the stack moves down. For example, when pushing a value onto the
data stack, the value pushed becomes the new T, while the previous value of T
becomes the new N, and so on.

* Pop: Popping an element from the stack is the exact reverse of a push. Popping
a value removes it from the stack, and the rest of the elements move up. Values
used in a computation are typically popped prior to computing the result.

The J1 stacks are finite, and can only store 32 elements, but the J1 does not check for

overflow or underflow. If a stack already contains 32 elements, pushing a new

element on the stack will not cause an exception; instead, the bottom-most element
is discarded to make room. Popping a value from an empty stack will not cause an
exception; the value of unused stack elements is undefined and may be random.

Similarly, performing two-operand instructions on a data stack containing only one

value will not result in an error, but the results of the computation are undefined,

and will likely vary depending on the previous contents of the stack.

The J1 includes an ALU that can perform 16 logical operations, including addition,
multiplication, comparison and bitwise logic operations. Inputs to the ALU are the
values stored in T and N (for binary operators), and may be popped from the stack
after use. Results are pushed back on the data stack. Instructions are also available
to load and store the data stack from memory, and transfer values between the data
stack and the return stack. All operations are performed on 16-bit words, for a
computational range of 0 to 65535 (0x0000 to 0XFFFF). Signed comparison
operators are available, allowing signed 16-bit integers in the range -32767 to
32767 to be represented. Boolean FALSE is represented as 0x0000, and while any
non-zero value is TRUE, 0x0001 is used by convention.

Although the]J1 architecture logically supports a 16-bit program counter (PC), the
Gameduino implementation is limited to fetching instructions from the 256 bytes of
RAM at J1_CODE. J1 instructions are always 2-byte words, so in effect the least-
significant bit and the most significant byte of the J1 PC are hard coded to 0 and
0x2B (decimal 43) respectively. The J1 implements a conditional branch on T=0, an
unconditional branch, as well as an unconditional subroutine call. Subroutine call
instructions push the program counter onto the return stack. One unique feature of

57

DRAFT Gameduino Reference Manual

the J1 is that subroutine returns typically do not require an instruction, because any
ALU instruction can be coded to also perform a subroutine return. Together with
some of the J1’s other features, this enables surprisingly compact code to be created.

1

Tl@l@ll@@ AAAAAAAD
R

T [XXXXXXXX XXXXXXXX > XXXXXXXX XXXXXXXX 0x0000 X X X XX XXX

N [XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x0001 XX XXX XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x0002 XX XXX XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x0003 X X XXX XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x27FE XXX XXX XX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x27FF XXX XXX XX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x2800 XX XXX XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x2801 |2 @ X X X X X X X X
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX é‘é
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x283E §§ XXX XXX XX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x283F XX XXX XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x2840 X X X X X XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x2841 XX X XX XXX
XXX XXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXX XXXXX XXXXXXXX XXXXXXXX XXXXXXXX O0x2AFE XX X X X XXX
XXX XXXXX XXXXXXXX XXXXXXXX XXXXXXXX Ox2AFF XX X X X XXX
XXX XXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x2B00 | XXX X X X X X
XXX XXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x2B01 §§ XXX XXXXX
XXX XXXXX XXXXXXXX XXXXXXXX XXXXXXXX §_‘§
XXX XXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x2BFE 8§ XX X X XXX X
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX Ox2BFF | XXX X X XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x2C00 X X X XX XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x2C01 X X X XX XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX OX7FFE XX XXX XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX Ox7FFF XX XXX XXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x8000 [> | XX XXX XXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x8002 |2 @ X X X X X X X X XX XX X X X X
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 5%
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x801A g& XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0x801C |8 [X x X x X X X X X X X X X X X X

Figure 4: J1 Logical Architecture

Because the Gameduino’s address space is byte-oriented, load and store operations
only transfer one byte of data, despite the fact that the J1 is a 16-bit CPU. Values
loaded from the Gameduino memory occupy the low 8 bits of a J1 word while the
upper bits are set to zero. Writes from the |1 to Gameduino address space ignore
the high byte, and store only the low byte. The only exception to this is when

accessing the coprocessor-only registers,
which are 16 bits wide; load and store
operations to these registers transfer an
entire word.

Forth-Based Assembly Language

The standard way of programming the J1 is to
use its Forth-based assembly language. An
assembler is provided as part of the

58

Sketch 5: J1 Assembly Program Template

start-microcode example

/ subroutine definitions go here
main
/ main program code goes here
begin again

end-microcode

DRAFT Gameduino Reference Manual

Gameduino coprocessor software development kit. A valid J1 assembly program
must contain a subroutine named “main”, which will be the primary entry point of
the program. This routine must not return to the caller - it should either loop
indefinitely itself, or end with an empty infinite loop (“begin again”). Optionally, the
program may contain additional subroutines before main. The shell of aJ1
assembly language program is presented as Sketch 5: J1 Assembly Program
Template. A summary of the J1 assembly language is provided as Table 51: J1
Assembly Language Summary.

Table 51: J1 Assembly Language Summary

Instruction Pops | Pushes Function

Assembler Directives
start-microprogram symbol | ---
end-microprogram
nnnnn constant symbol | --- Defines symbol

Literal Instructions

d# nnnnn --- nnnnn | Pushes constant nnnn
h# hhhh hhhh Pushes constant hhhh
[char]c C Pushes constant ¢
symbol value Pushes value of symbol

ANS Forth Instructions

N, T | N+T Add

1- T T-1 Decrement
= N, T | N=T Bitwise equality
< N, T | N<T Unsigned less-than
u< N, T | N<T Signed less-than
Xxor N, T N@T Bitwise exclusive or
and N, T | NAT Bitwise and
or N, T NvT Bitwise or
invert T ~T Bitwise negation
swap NT |TN Swaps T and N
dup T Duplicates T
drop T --- Discards T
over N Pushes a copy of N
nip N Discards N (preserving T)
>r T R Moves T to R
r> R T Moves Rto T
re R Pushes a copy of R
rshift N, T | N>>T Logical right shift
* N, T |NxT Multiply

Additional Instructions
swab T T Swap bytes within T
noop No operation

Multi-Word ANS Forth Instructions

ce T [T] Load byte at memory address T
c! NT |-- Store N to memory address T

59

DRAFT Gameduino Reference Manual

\ Instruction Pops \ Pushes Function
Merged Instructions
2dup+ --- N+T over over +
over+ T N+T over +
2dup= N=T over over =
over= T N=T over =
2dup< N<T over over <
over> T N>T over >
2dupuc< N<T over over u<
overu> T N>T over u>
2dupxor N®T over over xor
overxor T N@T over xor
2dupand --- NAT over over and
overand T NAT over and
2dupor NvT over over or
overor T NvT over or
dup>r R dup r>
2duprshift N>>T over over rshift
2dup* NxT over over *
over* T NxT over *
dupswab T dup swab
dupce@ [T] dup c@
Flow Control
symbol Define subroutine
; R Return, pop R to PC
;fallthru End subroutine without return
symbol R Call subroutine, push PC to R
if T Conditional branch
else Conditional branch separator
then Conditional branch terminator
begin -- Begin loop
again Return to “begin”, infinite loop
until T Bottom-exit, loop when false
while T Middle-exit, loop when true
repeat Return to “begin”

Each subroutine begins with a definition, includes multiple instructions, and ends

with a return. A subroutine definition is a colon, followed by the name of the

subroutine being defined. Forth words within each subroutine are assembled into J1
instructions, and are executed in the order that they are encountered. Due to the
J1’s stack-oriented architecture, arithmetic is executed in postfix fashion: programs
must first push the appropriate values onto the data stack prior to coding arithmetic
or logic instructions that will operate on them Finally, the subroutine ends with a

semicolon.

60

DRAFT Gameduino Reference Manual

Using the J1 Assembler

The]J1 assembler is not integrated into the Arduino IDE. Instead, a separate J1
assembler, written in the gforth programming language, is used to assemble J1 code
into binary format. One of the outputs of the J1 assembler is a header file that can be
included into Arduino sketches. The header includes the assembled J1 code as an
array of bytes stored in program memory.

<<<to-do: insert directions for assembling programs>>>

J1 Assembly Language Reference

J1 instructions include literals, which push values onto the data stack, ANS Forth
instructions and additional instructions that perform arithmetic, logical and data
operations, and flow-control statements. These instructions are described in the
tables below.

Assembler Directives: The assembler supports three directives: start- and end-
directives for marking the beginning and end of J1 assembly code, plus an assembler
constant facility. The directives are summarized in Table 52: J1 Assembler
Directives, below.

Table 52: J1 Assembler Directives

‘ Instruction ‘ Explanation

start-microprogram symbol Start Program

Function: Marks the start of a J1 microprogram for
the assembler.

Syntax: The start-microprogram directive must be
followed by a valid alphanumeric symbol. All
microprograms should contain a “main”
subroutine containing one or more instructions,
and close with the “end-microprogram” directive.
Microprograms may optionally contain additional
subroutine definitions.

Example: start-microprogram examplel

end-microprogram End Program

Function: Marks the end of a J1 microprogram to the
assembler.

Syntax: None.

Example: end-microprogram

61

DRAFT Gameduino Reference Manual

\ Instruction \ Explanation \

nnnnn constant symbol Define Constant

Function: Defines an assembler constant named
symbol with the value nnnnn.

Syntax: The “constant” directive must be preceded by
a valid decimal integer, nnnnn, in the range 0 to
65535, or a preprocesor definition that evaluates
to a decimal integer. It must be followed by a
valid symbol, the name of the constant.

Example: 10386 constant fillchar
Defines an assembler constant named “fillchar”
with the value 10386 (0x2892).

Literal Instructions: As shown in Table 53:]J1 Literal Instructions, a variety of
literal values can be pushed onto the J1's stack. Literals can include 16-bit values,
and are assembled into one or two instructions. A single instruction is used for
values of 0 through 32767 (0x000 through 0x7FFF), while two instructions are
needed for values of 32768 through 65535 (0x8000 through 0XFFFF).

Table 53: J1 Literal Instructions

‘ Instruction ‘ Explanation ‘

d# nnnnn Decimal Number: nnnnn > T

Function: Pushes a decimal literal onto the data stack.

Syntax: The “d#” directive must be followed by a valid decimal integer,
nnnnn, in the range 0 to 65535.

Note: Assembles to a single instruction for values in the range 0 to 32767;
two instructions and two J1 CPU cycles are required for values in the
range 32768 to 65535.

Example: d# 128
0x0080> T

h# hhhh Hexadecimal Number: Oxhhhh > T

Function: Pushes a hexadecimal literal onto the data stack.

Syntax: The “h#” directive must be followed by a valid hexadecimal
integer, hhhh, in the range 0x0000 to OxFFFF.

Note: Assembles to a single instruction for values in the range 0x0000 to
0x7FFF; two instructions and two J1 CPU cycles are required for
values in the range 0x8000 to OxFFFF.

Example: h# 2B80
0x2B80 > T

[char]c Character:c> T

Function: Pushes a one-byte character literal, c, onto the data stack.

Syntax: The “[char]” directive must be followed by a single one-byte
character, c.

Example: [char] Z
0x005A > T

62

\ Instruction
symbol

DRAFT Gameduino Reference Manual

\ Explanation

Insert Constant

Function: Inserts the named assembler constant as a literal; functionally
equivalent to the “d#” directive above.

Syntax: “symbol” is the name of any defined assembler constant. An
assembler error is returned if the name is invalid or undefined.

Example: fillchar
0x2892 > T

ANS Forth Instructions: The following Forth primitives are assembled as single
instructions. For the examples, note that literal instructions are used to load the
data stack, so T=0x0029 and if needed N=0x0003 (decimal 41 and 3 respectively).
Assume that Gameduino memory locations in RAM_PIC (including both 0x0029 and
0x0003) contain an ASCII blanks (0x20, decimal 32).

Table 54: J1 ANS Forth Instructions

\ Instruction Explanation
+ Plus:N+T>T
Function: Pops two values (N and T) from the data stack and pushes the
sum N+T onto the data stack, reducing the net stack depth by one.
Syntax: The “+” operator requires two operands on the data stack.
Arithmetic overflow does not cause an exception; instead, the carry
bit (most significant bit) of the result is discarded.
Example: d# 3 h# 0029 +
N=0x0003 + T=0x0029 = 0x002C> T
1- Decrement: —-T > T
Function: Subtracts one from T; does not change the stack depth.
Syntax: The “1-“ operator requires one operand on the data stack.
Arithmetic underflow does not cause an exception; decrementing
0x0000 results in OXFFFF.
Example: h# 0029 1-
T=0x0029 - 1 = 0x0028 > T
= Equals:N==T> T
Function: Pops two values (N and T) from the data stack and pushes a
Boolean flag onto the stack, reducing the net stack depth by one. The
flag is true (0x0001) if T and N are bit-for-bit identical, or false
(0x0000) otherwise.
Syntax: The “=" operator requires two operands on the data stack.
Example: d# 3 h# 0029 =
N=0x0003 == T=0x0029 = 0x0000 > T
< LessThan:N<T—> T

Function: Pops two values (N and T) from the data stack and pushes a
Boolean flag onto the stack, reducing the net stack depth by one. The
flag is true (0x0001) if N < T when N and T are treated as signed two’s
complement 16-bit integers, or false (0x0000) otherwise.

Syntax: The “<” operator requires two operands on the data stack.

Example: d# 3 h# 0029 <

N=0x0003 < T=0x0029 = 0x0001 > T

63

\ Instruction

u<

DRAFT Gameduino Reference Manual

Explanation \

Unsigned Less Than:N<T=> T

Function: Pops two values (N and T) from the data stack and pushes a
Boolean flag onto the stack, reducing the net stack depth by one. The
flag is true (0x0001) if N < T when N and T are treated as unsigned
16-bit integers, or false (0x0000) otherwise.

Syntax: The “u<” operator requires two operands on the data stack.

Example: d# 3 h# 0029 u<
N=0x0003 < T=0x0029 = 0x0001 > T

Xor

Exclusive Or: N® T> T

Function: Pops two values (N and T) from the data stack and pushes the
result of a bit-by-bit exclusive-or between N and T onto the stack,
reducing the net stack depth by one.

Syntax: The “xor” operator requires two operands on the data stack.

Example: d# 3 h# 0029 xor
N=0x0003 ® T=0x0029 = 0x002A > T

and

And:NAT=>T

Function: Pops two values (N and T) from the data stack and pushes the
result of a bit-by-bit and between N and T onto the stack, reducing the
net stack depth by one.

Syntax: The “and” operator requires two operands on the data stack.

Example: d# 3 h# 0029 and
N=0x0003 A T=0x0029 = 0x0001 > T

or

Or:NvT>T

Function: Pops two values (N and T) from the data stack and pushes the
result of a bit-by-bit inclusive-or between N and T onto the stack,
reducing the net stack depth by one.

Syntax: The “or” operator requires two operands on the data stack.

Example: d# 3 h# 0029 or
N=0x0003 v T=0x0029 = 0x002B > T

invert

Invert: ~T > T
Function: Performs a bitwise inversion of T; all one bits become zero and
vice-versa. Does not change the stack depth.
Syntax: The “invert” operator requires one operand on the data stack.
Example: h# 0029 invert
~ T=0x0029 = 0xFFD6 > T

swap

Swap:N& T
Function: Exchanges the values of N and T on the data stack. Does not
change the stack depth.
Syntax: The “swap” operator requires two operands on the data stack.
Example: d# 3 h# 0029 swap
N=0x0003 T=0x0029 - N=0x0029 T=0x0003

dup

Duplicate: T > [++dstack]
Function: Pushes the value of T onto the stack, effectively duplicating T;
increases the stack depth by one.
Syntax: The “dup” operator requires one operand on the data stack.
Example: h# 0029 dup
T=0x0029 > T

64

DRAFT Gameduino Reference Manual

\ Instruction Explanation \
drop Drop

Function: Discards the top element of the data stack, decreasing the stack
depth by one and promoting N to the new top of stack.

Syntax: The “drop” operator requires one operand on the data stack.

Example: drop

over Over: N> T

Function: Pushes a copy of N onto the data stack, increasing stack depth
by one.

Syntax: The “over” operator requires two operands on the data stack.

Example: d# 3 h# 0029 over
N=0x0003 > T

nip Nip

Function: Removes N from the data stack, preserving T and decreasing
stack depth by one.

Syntax: The “nip” operator requires two operands on the data stack.

Example: d# 3 h# 0029 nip

>r Put-rStack: T > R

Function: Pops T from the data stack and pushes it onto the return stack,
decreasing data stack depth by one and increasing return stack depth
by one.

Syntax: The “>r” operator requires one operand on the data stack. Since
the return stack is also used to store subroutine return addresses, any
items pushed onto the return stack must be removed before
attempting to return via “;".

Example: h# 0029 >r
T=0x0029 2> R

r> rStack-Get: R=> T

Function: Pops R from the return stack and pushes it onto the data stack,
decreasing return stack depth by one and increasing data stack depth
by one.

Syntax: The “r>" operator requires one operand on the return stack. User
programs must take care not to disturb existing return addresses
when manipulating the return stack.

Example: r>
R=0x0029 > T

re rStack-Fetch: R 2> [T

Function: Copies R from the return stack and pushes it onto the data
stack, increasing data stack depth by one. Return stack depth is not
affected.

Syntax: The “r@” operator requires one operand on the return stack.

Example: r@

R=0x0029 > T

65

\ Instruction
rshift

DRAFT Gameduino Reference Manual

Explanation \

Right Shift: N>>T> T

Function: Pops two values (N and T) from the data stack, logically shifts N
to the right by T bit places, inserting zeros into the most significant
places vacated by the shift. The resultis pushed onto the data stack;
“rshift” reduces the net stack depth by one.

Syntax: The “rshift” operator requires two operands on the data stack.
The result of the operation is undefined if T >= 16.

Example: h# 1A3C h# 0003 rshift
N=0x1A3C >> T=0x0003 = 0x0347 > T

Multiply: NxT> T

Function: Pops two values (N and T) from the data stack and pushes the
product TxN onto the data stack, reducing the net stack depth by one.

Syntax: The “*” operator requires two operands on the data stack.
Arithmetic overflow does not cause an exception; instead, the carry
bit (most significant bit) of the result is discarded.

Example: d# 3 h# 0029 *
N=0x0003 x T=0x0029 = 0x007B > T

Additional Instructions: In addition to the ANS Forth instructions, the J1
coprocessor implements two instructions that are not present in the standard Forth
language, as described in Table 55: J1 Additional Instructions below. These
operations are also implemented as single instructions on the Gameduino’s J1 CPU:

Table 55: J1 Additional Instructions

‘ Instruction

swab

Explanation

Swap Bytes: T'> T
Function: Swaps the high and low bytes of T. Does not change the

stack depth.

Syntax: The “swab” operator requires one operand on the data
stack.

Example: h# 0029 swab
T=0x0029 swab = 0x2900 > T

noop

No Operation
Function: Performs no operation, does not change any stack.

Syntax: None.
Example: noop

Multi-word Instructions: In addition to some literal instructions, a few additional
ANS Forth base words require multiple J1 instructions for implementation, as
described in Table 56: J1 Multi-Word Instructions. In particular, memory access
timing requires that memory access take two J1 machine cycles to complete, so
Forth words that require memory access are assembled into two machine
instructions to provide sufficient time.

Table 56: J1 Multi-Word Instructions

\ Instruction

Explanation \

66

\ Instruction
ce

Character Fetch: [T]> T

DRAFT Gameduino Reference Manual

Explanation \

Function: Fetches an 8-bit byte or a 16-bit word from memory, depending

on context:
* IfTis between 0x0000 and 0x7FFF (0 to 32767 decimal), reads
the byte at memory address T and pads the upper 8 bits with
Zeros.
* IfTis an even number between 0x8000 and 0x801C (32768 to
32796 decimal), reads the 16-bit word at memory address.
In either case, the top of the data stack is replaced with the value read;
net data stack depth is not affected.

Syntax: The “c@” operator requires one operand on the data stack. The
operation of “c@” is undefined when T contains an odd number
between 0x8001 and 0x801D, or when T contains a value greater than
0x801C.

Note: Assembled as “noop c@” to ensure correct memory access timing.

Example: h# 0x0029 c@

[T=0x0029]=0x0020 > T

c!

Character Store: N - [T]

Function: Writes an 8-bit or a 16-bit value to memory, depending on
context:

* IfTis between 0x0000 and 0x7FFF (0 to 32767 decimal), writes
the low (least-significant) byte of N to the memory address T.

* IfTisan even number between 0x8000 and 0x801C (32768 to
32796 decimal), writes all 16 bits of N to the word at memory
address T and T+1.

In either case, “c!” pops two values (N and T) from the data stack,
reducing data stack depth by two.

Syntax: The “c!” operator requires two operands on the data stack. The
operation of “c!” is undefined when T contains an odd number between
0x8001 and 0x801D. Data is discarded without warning if the
operation attempts to write data to non-existent or read-only memory
addresses.

Note: Assembles as two instructions (one that writes to memory but only
removes N from the stack, followed by drop) to ensure correct memory
access timing.

Example: d# 3 h# 0x0029 c!

N=0x0003 = [T=0x0029]

Merged Instructions: The J1 CPU can execute a number of single instructions that
perform the equivalent of two ANS Forth primitives in sequence. In each case, the
merged instruction is named for its components: for example, executing “overand”
is the same as executing the code fragment “over and”. Merged instructions
represent a significant opportunity to save code size and execution time by taking
advantage of features unique to the J1 CPU architecture. Table 57:]J1 Merged
Instructions describes these instructions.

Table 57: J1 Mer;

ed Instructions

\ Instruction

Explanation

67

DRAFT Gameduino Reference Manual

\ Instruction Explanation \
2dup+ 2dup Plus:N+T—> T
Function: Pushes the sum N+T onto the data stack, increasing the net
stack depth by one.
Syntax: The “2dup+” operator requires two operands on the data stack.
Arithmetic overflow does not cause an exception; instead, the carry
bit (most significant bit) of the result is discarded.
Example: d# 3 h# 0029 2dup+
N=0x0003 + T=0x0029 = 0x002C> T
over+ 2dup Plus:N+T—> T
Function: Pops one value (T) from the data stack, and pushes the sum
N+T onto the data stack, leaving the net stack depth unchanged.
Syntax: The “over+” operator requires two operands on the data stack.
Arithmetic overflow does not cause an exception; instead, the carry
bit (most significant bit) of the result is discarded.
Example: d# 3 h# 0029 over+
N=0x0003 + T=0x0029 = 0x002C > T
2dup= 2Dup Equals:N==T> T
Function: Pushes a Boolean flag onto the data stack, increasing the net
stack depth by one. The flag is true (0x0001) if T and N are bit-for-bit
identical, or false (0x0000) otherwise.
Syntax: The “2dup=" operator requires two operands on the data stack.
Stack underflow does not raise an exception; results of a computation
involving an underflow are undefined.
Example: d# 3 h# 0x0029 2dup=
N=0x0003 == T=0x0029 = 0x0000 > T
over= Over Equals:N==T> T
Function: Pops one value (T) from the data stack, and pushes a Boolean
flag onto the data stack, leaving the net stack depth unchanged. The
flag is true (0x0001) if T and N are bit-for-bit identical, or false
(0x0000) otherwise.
Syntax: The “over=" operator requires two operands on the data stack.
Stack underflow does not raise an exception; results of a computation
involving an underflow are undefined.
Example: d# 3 h# 0x0029 over=
N=0x0003 == T=0x0029 = 0x0000 > T
2dup< 2dup Less Than: N<T> T

Function: Pushes a Boolean flag onto the data stack, increasing the net
stack depth by one. The flag is true (0x0001) if N < T when N and T
are treated as signed two’s complement 16-bit integers, or false
(0x0000) otherwise.

Syntax: The “2dup<” operator requires two operands on the data stack.

Example: d# 3 h# 0029 2dup<
N=0x0003 < T=0x0029 = 0x0001 > T

68

DRAFT Gameduino Reference Manual

\ Instruction Explanation \
over> 2dup Greater Than:N>T> T
Function: Pops one value (T) from the data stack and pushes a Boolean
flag onto the stack, leaving the net stack depth unchanged. The flag is
true (0x0001) if N > T when N and T are treated as signed two’s
complement 16-bit integers, or false (0x0000) otherwise.
Syntax: The “over>" operator requires two operands on the data stack.
Example: d# 3 h# 0029 over>
N=0x0003 > T=0x0029 = 0x0000 > T
2dupu< 2dup Unsigned Less Than: N<T> T
Function: Pushes a Boolean flag onto the data stack, increasing the net
stack depth by one. The flag is true (0x0001) if N < T when N and T
are treated as unsigned 16-bit integers, or false (0x0000) otherwise.
Syntax: The “2dupu<” operator requires two operands on the data stack.
Example: d# 3 h# 0029 2dupu<
N=0x0003 < T=0x0029 = 0x0001 > T
overu> Over Unsigned Greater Than: N>T > T
Function: Pops one value (T) from the data stack, and pushes a Boolean
flag onto the stack, leaving the net stack depth by unchanged. The flag
is true (0x0001) if N > T when N and T are treated as unsigned 16-bit
integers, or false (0x0000) otherwise.
Syntax: The “overu>”" operator requires two operands on the data stack.
Example: d# 3 h# 0029 overu>
N=0x0003 > T=0x0029 = 0x0000 > T
2dupxor 2Dup Exclusive Or: N® T> T
Function: Pushes the result of a bit-by-bit exclusive-or between N and T
onto the data stack, increasing the net stack depth by one.
Syntax: The “2dupxor” operator requires two operands on the data stack.
Stack underflow does not raise an exception; results of a computation
involving an underflow are undefined.
Example: d# 3 h# 0x0029 2dupxor
N=0x0003 ® T=0x0029 = 0x002A > T
overxor Over Exclusive Or: N® T> T
Function: Pops one value (T) from the data stack, and pushes the result of
a bit-by-bit exclusive-or between N and T onto the data stack, leaving
the net stack depth unchanged.
Syntax: The “overxor” operator requires two operands on the data stack.
Stack underflow does not raise an exception; results of a computation
involving an underflow are undefined.
Example: d# 3 h# 0x0029 overxor
N=0x0003 ® T=0x0029 = 0x002A > T
2dupand 2dup And:NAT>T

Function: Pushes the result of a bit-by-bit and between N and T onto the
stack, increasing the net stack depth by one.
Syntax: The “2dupand” operator requires two operands on the data stack.
Example: d# 3 h# 0029 2dupand
N=0x0003 A T=0x0029 = 0x0001 > T

69

\ Instruction
overand

DRAFT Gameduino Reference Manual

Explanation \
Over And:NAT> T
Function: Pops one value (T) from the data stack and pushes the result of
a bit-by-bit and between N and T onto the data stack, leaving the net
stack depth unchanged.
Syntax: The “overand” operator requires two operands on the data stack.
Example: d# 3 h# 0029 overand
N=0x0003 A T=0x0029 = 0x0001 > T

2dupor

2dupOr:NvT>T
Function: Pushes the result of a bit-by-bit inclusive-or between N and T
onto the data stack, increasing the net stack depth by one.
Syntax: The “2dupor” operator requires two operands on the data stack.
Example: d# 3 h# 0029 2dupor
N=0x0003 v T=0x0029 = 0x002B > T

overor

OverOr:NvT>T

Function: Pops one values (T) from the data stack and pushes the result of
a bit-by-bit inclusive-or between N and T onto the stack, leaving the
net stack depth unchanged.

Syntax: The “overor” operator requires two operands on the data stack.

Example: d# 3 h# 0029 overor
N=0x0003 v T=0x0029 = 0x002B > T

dup>r

Dup Put-rStack: T > R

Function: Copies T from the data stack to the return stack, increasing
return stack depth by one but leaving the data stack depth unchanged.

Syntax: The “dup>r" operator requires one operand on the data stack.
Since the return stack is also used to store subroutine return
addresses, any items pushed onto the return stack must be removed
before attempting to return via “;”.

Example: h# 0x0029 >r

T=0x0029 > R

2duprshift

2dup Right Shift: N>>T > T

Function: Logically shifts N to the right by T bit places, inserting zeros
into the most significant places vacated by the shift. The result is
pushed onto the data stack; “2duprshift” increases the net stack depth
by one.

Syntax: The “2duprshift” operator requires two operands on the data
stack. The result of the operation is undefined if T >= 16.

Example: h# 1A3C h# 0003 2duprshift
N=0x1A3C >> T=0x0003 = 0x0347 > T

2dup*

2dup Multiply: NxT=> T
Function: Pushes the product TxN onto the data stack, increasing the net

stack depth by one.

Syntax: The “2dup*” operator requires two operands on the data stack.
Arithmetic overflow does not cause an exception; instead, the carry
bit (most significant bit) of the result is discarded.

Example: d# 3 h# 0029 2dup*

N=0x0003 x T=0x0029 = 0x007B > T

70

\ Instruction
over*

DRAFT Gameduino Reference Manual

Explanation

Over Multiply: NxT> T

Function: Pops one value (T) from the data stack and pushes the product
TxN onto the data stack, leaving the net stack depth unchanged.

Syntax: The “over*” operator requires two operands on the data stack.
Arithmetic overflow does not cause an exception; instead, the carry
bit (most significant bit) of the result is discarded.

Example: d# 3 h# 0029 over*
N=0x0003 x T=0x0029 = 0x007B > T

dupswab

Dup Swap Bytes: T'> T
Function: Swaps the high and low bytes of T and pushes the result onto
the data stack, increasing the stack depth by one.
Syntax: The “swab” operator requires one operand on the data stack.
Example: h# 0029 dupswab
T=0x0029 swab = 0x2900 > T

dupce@

Dup Character Fetch: [T] > T

Function: Fetches an 8-bit byte or a 16-bit word from memory, depending
on context, and pushes it onto the data stack:

¢ IfTis between 0x0000 and 0x7FFF (0 to 32767 decimal),
reads the byte at memory address T and pads the upper 8 bits
with zeros.
¢ [fTisan even number between 0x8000 and 0x801C (32768 to
32796 decimal), reads the 16-bit word at memory address T.
In either case, the resulting value is pushed onto the data stack,
increasing the net stack depth by one.

Syntax: The “dupc@” operator requires one operand on the data stack.
The operation of “dupc@” is undefined when T contains an odd
number between 0x8001 and 0x801D, or when T contains a value
greater than 0x801C.

Note: Assembled as “dup c@” to ensure correct memory access timing.

Example: h# 0x0029 dupc@

[T=0x0029]=0x0020 > T

Flow Control: The assembler also recognizes a number of that used to determine
how preceding and subsequent instructions should be assembled, or that implement
flow control such as branching and subroutines. Most of the directives will
assemble into one J1 instruction, typically a branch or call. Some directives,
including “:”, “then”, and “begin” mark branch or call addresses instead. Subroutine
returns via “;” do not require a separate instruction in most cases.

Table 58: J1 Assembler Flow Control

\ Instruction

Explanation

71

\ Instruction
symbol

DRAFT Gameduino Reference Manual

Explanation
Define Subroutine

Function: Defines a subroutine entry point named “symbol”. Code
following the subroutine name up to the next semicolon will be
assembled into a subroutine and called when the symbol is invoked.

Syntax: The “:” directive must be followed by a valid symbol (the name of
the subroutine) and zero or more instructions. Subroutine definitions
may not be nested: every subroutine must be closed with “;” or
“;fallthru” directive before another subroutine can be defined.

Example: : > swap < ;

Defines a subroutine entry point named “>” that will execute “swap <”
whenever it is called.

Return from Subroutine: R > PC

Function: Completes the definition of a subroutine and assembles a
return instruction: the top-most value of the return stack is removed
and loaded into the program counter. Reduces the return stack depth
by one; the data stack depth is unaffected.

Syntax: The “;” directive must be preceded by a valid subroutine
definition consisting of the “:” directive, a symbol, and zero or more
instructions.

Note: The J1 architecture often allows a “free” return: ALU instructions
can be coded to also return from a subroutine, making subroutines
particularly efficient at reducing the overall code size of a program.

Example: ;

R>PC

;fallthru

End Subroutine without Return

Function: Completes the definition of a subroutine, but does not assemble
areturn instruction. This allows subroutines with multiple entry
points. Execution continues with the next instruction following the
“fallthru” directive.

Syntax: The “;fallthru” directive must be preceded by a valid subroutine
definition beginning with the “:” directive, a symbol, and zero or more
executable instructions. It must be followed by another subroutine
definition.

Example: : 0> d# 0 ;fallthru : > swap < ;

Defines a subroutine with two entry points, “0>”" and “>”. When “0>"
is called, the instruction stream “d# 0 swap <” is executed; when “>”
is called, only “swap <” is executed.

symbol

Call Subroutine: PC 2 R; symbol 2 PC

Function: Pushes the location of the following instruction onto the return
stack and calls the named subroutine. Return stack depth increases
by one.

Syntax: The name of any defined subroutine, separated by white space.
An assembler error is returned if the name is invalid or if a
subroutine with the given name can'’t be found.

Example: 0>
Calls the subroutine defined as an example above; the instruction
stream “d# 0 swap <” is executed.

72

\ Instruction
if

DRAFT Gameduino Reference Manual

Explanation

Conditional Branch

Function: Pops T from the data stack and treats it as a Boolean flag.
When the flag is false (0x0000), the code between “else” and “then” is
executed. Otherwise, the code between “if” and “else” is executed. In
either case, execution resumes with the instruction following “then”.
“If” reduces the data stack depth by one.

Syntax: A conditional branch begins with “if”, may optionally contain
“else”, and must close with “then”; each is separated by zero or more
words. The execution path is undefined if the stack is empty.
Conditional branches may be nested to an unspecified depth.

Example: 2dup < if nip else drop then
Compares T and N, and removes the smaller value from the stack
preserving the larger as the new top of stack: max(N,T) > T.

else

Conditional Branch Separator

Function: Separates the two alternatives code paths in a conditional
branch. If there is no code between “else” and “then”, the “else” may
also be omitted. See “if” above.

Syntax: A conditional branch begins with “if”, may optionally contain
“else”, and must close with “then”; each is separated by zero or more
words. Conditional branches may be nested to an unspecified depth.

Example: 2dup < if nip else drop then
Compares T and N, and removes the smaller value from the stack
preserving the larger as the new top of stack: max(N,T) > T.

then

Conditional Branch Terminator

Function: Ends a conditional branch; normal execution resumes with the
instruction following “then”. See if above.

Syntax: A conditional branch begins with “if”, may optionally contain
“else”, and must close with “then”; each is separated by zero or more
executable instructions. Conditional branches may be nested to an
unspecified depth.

Example: 2dup < if nip else drop then
Compares T and N, and removes the smaller value from the stack
preserving the larger as the new top of stack: max(N,T) > T.

begin

Begin Loop
Function: Starts a looping construct; after reaching the bottom of the

loop, execution will resume with the instruction following “begin”.
Does not change data or return stack depth.
Syntax: A loop may take one of three forms:
* An infinite loop consisting of “begin” followed by zero or more
words and completed by “again”,
* A bottom-exit loop consisting of “begin” followed by zero or
more words ending with “until”, or
* A middle-exit loop consisting of “begin”, “while”, and “repeat”,
with zero or more words between each.
Loops may be nested to an unspecified depth.
Example: begin d# 1 + again
Loops forever, adding 1 to the top of the stack.

73

DRAFT Gameduino Reference Manual

\ Instruction Explanation
again Infinite Loop

Function: Returns execution to the instruction following the preceding
“begin”. Any code following “again” is never executed. Does not affect
data or return stack depth.

Syntax: An infinite loop consists of “begin” followed by zero or more
words and terminated by “again”. Loops may be nested to an
unspecified depth: a “begin” ... “again” loop may itself contain any
number and types of loop construct.

Example: begin d# 1 + again
Loops forever, adding 1 to the top of the stack.

until Bottom-Exit Loop

Function: Completes a bottom-exit loop: pops T from the data stack and
treats it as a Boolean flag. If false (0x0000), returns execution to the
instruction following the preceding “begin”. Otherwise, continues
execution with the instruction following “until”. Reduces data stack
depth by one.

Syntax: A bottom-exit loop consists of “begin” followed by zero or more
words, ending with “until”. Loops may be nested to an unspecified
depth: a “begin” ... “until” loop may itself contain any number and
types of loop constructs.

Example: d# 45 d# 1 begin d# 1 + 2dup= until
Count up from 1 to 45 by adding one to the top of stack until the
resulting value equals 45.

while Middle-Exit Loop Exit

Function: Pops T from the data stack and treats it as a Boolean flag. If
false (0x0000), exits the loop by returning execution to the
instruction following the subsequent “repeat”. Otherwise, execution
continues with the instruction after “while”. Reduces data stack depth
by one.

Syntax: A middle-exit loop consists of “begin”, “while”, and “repeat”, with
zero or more executable instructions between each. Loops may be
nested to an unspecified depth: a “begin” ... “while” ... “repeat” loop
may contain any number and types of loop constructs.

Example: d# 0 d# 4 begin 1- 2dup= while foo repeat
Counts down from 4 to 0, executing the “foo” subroutine four times.

repeat Middle-Exit Loop Boundary

Function: Returns execution to the instruction following the matching
“begin”.

Syntax: A middle-exit loop consists of “begin”, “while”, and “repeat”, with
zero or more executable instructions between each. Loops may be
nested to an unspecified depth: a “begin” ... “while” ... “repeat” loop
may contain any number and types of loop constructs.

Example: d# 0 d# 4 begin 1- 2dup= while foo repeat
Counts down from 4 to 0, executing the “foo” subroutine four times.

Useful Subroutines: The following subroutines are useful in a wide variety of
programs, either because they define additional ANS Forth words, or perform
frequently-used code sequences.

74

DRAFT Gameduino Reference Manual

<<<to-do: insert a table of useful subroutines>>>

Code Optimization

Although the]J1 coprocessor only has 256 bytes (128 instructions) of program
memory, it also has a number of features that a clever programmer can use to write
efficient code that occupies as little space as possible. These techniques include:

1.

Factor common code into subroutines: A J1 subroutine call is a single
instruction, and the return is almost always free in terms of code space and
execution time, since a return from subroutine can be coded into any ALU
instruction. This means that even short sequences of instructions can be made
into subroutines to save space. Factor out:

* Sequences of 2 instructions that are used 3 or more times in your code, and

* Sequences of 3 or more instructions that are used at least twice in your code.

For example, if the subroutine in Sketch 6: Example Subroutine replaces 5
instances where the three-instruction

sequence “d# 2 * 2dup="would be used Sketch 6: Example Subroutine
in your code, the net savings is 7

: - : 2*2dup= d# 2 * 2dup= ;
instructions (14 bytes).

Use multiple entry subroutines: The J1 assembler allows subroutines to have
multiple entry points. This allows the clever programmer to factor more code
into subroutines. After factoring repeated instruction sequences into
subroutines, look for instances where the same instruction or sequence of
instructions precedes a subroutine call multiple times in your code. Factor these
out into an additional subroutine entry point preceding the original subroutine
using ;fallthru.

For example, after factoring your code Sketch 7: Example Multiple-Entry Subroutine

into subroutines as described above,

. . : +2*2dup= + ;fallthru
you find 3 instances where your code . 2%2dup= d# 2 * 2dup= :
reads “+ 2*2dup=", and two other

instances that are unique. You can then define a multiple-entry subroutine using
;fallthrou as in Sketch 7: Example Multiple-Entry Subroutine to save an
additional 3 instructions (6 bytes) - a total of 10 instructions (20 bytes) savings.

Use merged instructions: The J1 Forth instruction set includes two merged
instructions, 2dup= and 2dupxor, that merge the function of the Forth 2dup
operation with quality or logical exclusive-or (respectively). In the J1, these
merged instructions implement common sequences of operations into a single
instruction. These two instructions are particularly useful for programming
loops, because they leave both of their arguments on the stack after execution,
leaving the stack properly set up for another iteration of the loop.

75

DRAFT Gameduino Reference Manual

If you are programming directly in J1 microcode rather than assembler, many
additional merged instructions are possible by manipulating the J1 stack
pointers: any ALU instruction that removes values from either stack can be
coded to retain the operands on the stack instead. This effectively merges the
instruction with dup or 2dup (for one-operand and two-operand instructions,
respectively), saving instruction space. Possible merged instructions include
2dup+, dup1-, 2dup<, dupus, 2dupand, 2dupor, dupinvert, 2duprshift, and
2dup*.

Code to facilitate free returns: Subroutines should end with ALU instructions.
ALU instructions are those in Table 54: J1 ANS Forth Instructions or Table 55:]J1
Additional Instructions. This allows the return to be coded directly into the last

instruction in the subroutine. If this isn’t possible, ending a subroutine with a
call to a different subroutine will allow the assembler to replace the call with a
jump, also resulting in a free return. Avoid ending a subroutine with an
instruction from Table 53: J1 Literal Instructions, since these can’t be converted

into free returns.

Use one-instruction literals: When possible, avoid literal values greater than
0x7FFF (32,767 decimal). Literals between 0x0000 and 0x7FFFF can be
assembled into a single load instruction. Literals 0x8000 (decimal 32,768) must
be assembled into two instructions, a literal followed by invert.

Count down instead of up: The J1 instruction set includes a single instruction
decrement (1-), but does not include an increment instruction. Incrementing a

counter typically takes two instructions (d# 1 +).
[t often saves an instruction to decrement

Sketch 9: Decrementing Loop

through a loop working from a higher memory h# cf >r
address to a lower one or to decrement a loop EZ;SO@ hi# 4000
counter towards zero, rather than incrementing dup c@ r@ and
from lower addresses to higher ones or over c!

: . - d# 1 + 2dup=
incrementing a counter towards a limit. For until

example, Sketch 8: Incrementing Loop and
Sketch 9: Decrementing Loop both perform the
same function (a logical “and” of sprite image
memory with 0xCF to clear one of the sets of 4-

Sketch 8: Incrementing Loop

. h# cf >r
color sprite images). However, the decrement h# 3FFF h# 7FFF
version is four bytes (two instructions) shorter: begin
the use of the single-instruction decrement (1-) g\‘jgrcgl re and
instead of the two instruction literal and add (d# 1- 2dup=
until

1 +) saves one, and the elimination of the two-
instruction literal (0x8000) in favor of a one-
instruction value (0x7FFF) saves another.

76

DRAFT Gameduino Reference Manual

J1 Microcode

The J1 machine language is powerful, and contains a large number of instructions
that are not directly implemented in the assembler language. The hardware
architecture of the J1 differs somewhat from the logical architecture described
above.

<<<to-do: insert diagram of J1 hardware architecture>>>

J1 microcode is bit-field coded, as described in the following tables. There are 5
overall types of instructions: literals, conditional and unconditional jumps, a
subroutine call, and ALU instructions:

¢ Literal: Loads a literal value V into T, increments the data stack pointer, and
copies the previous value of T to this location as the new value of N: V> T, T >
[++dstack].

* Unconditional Jump: Loads a new value N into the program counter. The old
value is discarded, and neither stack is modified. Because J1 instructions are 16-
bit words, N must be an even number.

* Conditional Jump: Removes T from the stack by decrementing dstack. If T=0,
jumps to N by loading it into the program counter. The old value PC value is
discarded, and the return stack is not modified. Because J1 instructions are 16-
bit words, N must be an even number

* Subroutine Call: Loads a new value N into the program counter. The old value
is pushed onto the return stack, increasing the return stack depth by one. The
data stack is not modified. Because J1 instructions are 16-bit words, N must be
an even number.

¢ ALU Operation: ALU operations are multi-purpose instructions that can include
areturn from a subroutine, store the result of a computation onto the data stack,
copy T into N or R, write to memory, and adjust the data and return stack
pointers - or potentially all of these operations in a single instruction.

Coding of J1 microinstructions is described in Table 59: J1 Microcode Instructions.
The bit fields for ALU operations are further explained in the additional tables
below.

Table 59: J1 Microcode Instructions
\ Instruction Format \
Literal 1 V1aVi3V12V11VieVesVesVe7VeeVoesVesVesVe2Ve1Veo

Unconditional Jump [© © © @ 1 1 ® 0 N7 Ne Ns Na N3 N2 N1 No
Jump on T=0 O 0 1 0 1 1 0 0 N7 NeNsNaNsNz2NiNe
Subroutine Call @ 1 0 0 1 1 0 0 N7NeNsNaN3NaNiNo
ALU Operation O 1 1 P 030201005 A W X Di1DeR1Re

Voo-V14: Immediate value to load, 0x0000 to 0x7FFF (0 to 32767 decimal).

X: Unused bit, set to 0 for compatibility

No-N7: Target address for jump or call, 0x00 to OxFE (0 to 254 decimal); must be even.
P: Pop program counter from return stack, [rstack--]>PC; 0=no and 1=yes.

77

DRAFT Gameduino Reference Manual

00-03: ALU operation to execute, see Table 60: ALU Operation Codes.

S: Copy T>N, 0=no and 1=yes.

A: Copy TR, 0=no and 1=yes.

W: Write N->[T], 0=no and 1=yes.

Do-D1: Data stack pointer (dstack) adjustment, see Table 61: Data Stack Adjustment.
Ro-Ri: Return stack pointer (rstack) adjustment, see Table 62: Return Stack Adjustment.

Table 60: ALU Operation Codes Table 61: Data Stack Adjustment
T 0x0 No adjustment | © ©

N 0x1 dstack + 1 01

N+T 0x2 Undefined 10

NAT 0x3 dstack -1 11

NvT 0x4

N®T 0x5 Table 62: Return Stack Adjustment
T
N==T 0x7 No adjustment | © ©

N<T 0x8 rstack + 1 01

N>>T 0x9 rstack - 2 10

T-1 OxA rstack - 1 11

R 0xB

[T] 0xC

N x T 0xD

swab T OxE

N<T OxF

<<<to-do: better description of J1 microprogramming!>>>

Screenshot Feature

The Gameduino hardware composes each raster line in a memory buffer before
outputting it to the screen. The screenshot feature makes this buffer available at the
SCREENSHOT memory locations, 0x2C00-0x2F1F (11264-12063 decimal) so that
the host microcontroller can read it via the SPI interface.

Screenshot Line Select Register

To capture a row of video data, load SCREENSHOT_Y with a value between 0x8000
and 0x812B (decimal 32768 and 33067), corresponding to the flag bit F=1 and the
So-Ss equal to the line number 0x000-0x12B (0 to 299 decimal) to be captured.
Writing a 0 disables the screenshot feature. The low bits of the SCREENSHOT_Y
register always reflect the current raster line being generated. When the flag bit of
the register reads 1, the selected line of data is available in memory locations
0x2C00-0x2F1F (11264-12063 decimal).

Table 63: SCREENSHOT_Y Register
‘ Symbol Address Length Byte Offset and Register Contents ‘ Default
(hex) (dec) | (hex) | (dec) +0 +1

78

DRAFT Gameduino Reference Manual

[SCREENSHOT_Y [RW [0x2406 [10246 | 0x2 | 2 [5756555453525150 | F X X X X X X Ss | 6x0000 |
X: Unused bit position, ignored; should be 0 for compatibility reasons.
So-Ss: Raster line to capture, 0x000-0x12B (0-299 decimal).
F: Screenshot flag, 0=disabled or not ready, or 1=enabled or data ready.

Screenshot Line Buffer

The screenshot line buffer, SCREENSHOT, contains color information for 400 pixels
and occupies 800 bytes beginning at address 0x2C00 (11264 decimal). Every pixel
is composed of a 2-byte Gameduino color value. Because pixels output to the video
hardware cannot be transparent, the alpha channel data is always zero.

Table 64: SCREENSHOT Memory Map

Pixe Addre eng Byte Offse Register Conte
(hex) (dec) | (hex) | (dec) +0 +1
000 R | 0x2C00 | 11264 | 0x2 2 | G2G1GeB4B3B2B1Be | X R4R3R2R1ReG4G3
001 R | 0x2CO1 | 11265 | Ox2 2 | G2G1GeB4B3B2B1Be | X R4R3R2R1ReG4G3
398 R | Ox2F1E | 12062 | Ox2 2 | G2G1GeB4B3B2B1Be | X R4R3R2R1ReG4G3
399 R | Ox2F1F | 12063 | Ox2 2 | G2G1GeB4B3B2B1Be | X R4R3R2R1ReG4G3

X: Alpha channel color information, always 0.
R4-Ro: Red channel color information, 0-32.
B4+-Bo: Green channel color information, 0-32.
B4-Bo: Blue channel color information, 0-32.

79

DRAFT Gameduino Reference Manual

Glossary

Acronyms

MISO: Master In/Slave Out, the SPI line used to send data from the Gameduino to
the host microcontroller. The Gameduino uses Arduino pin 11 for MISO. See
SPI.

MOSI: Master Out/Slave In, the SPI line used to send data from the host
microcontroller to the Gameduino. Arduino pin 12 is MOSI on the
Gameduino board. See SPI.

SCK: Serial Clock, the SPI line used to send clock pulses that synchronize data
transfers. The Gameduino uses Arduino pin 13 for SCK. See SPI.

SEL: Select, the SPI pin used to select the target device for SPI communication. By
default, the Gameduino uses Arduino digital pin 9 for SEL. See SPI.

SPI: Serial Peripheral Interface, a synchronous serial data link protocol. The SPI
interface uses 4 digital lines: SEL, MISO, MOSI, and SCK. See MISO, MOSI, SCK,
and SEL.

SS: Slave select, an alternate term for SEL. See SEL.

Time
ms, millisecond: One thousandth (1x10-3) of a second.
ps, microsecond: One millionth (1x10-¢) of a second.

ns, nanosecond: One billionth (1x10-¢) of a second.
1ms =1000us = 1,000,000ns

80

