world.cpp 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. /*
  2. * DoRayMe - a quick and dirty Raytracer
  3. * World implementation
  4. *
  5. * Created by Manoël Trapier
  6. * Copyright (c) 2020 986-Studio.
  7. *
  8. */
  9. #include <world.h>
  10. #include <light.h>
  11. #include <shape.h>
  12. #define MIN_ALLOC (2)
  13. World::World() : objectCount(0), lightCount(0)
  14. {
  15. this->allocatedLightCount = MIN_ALLOC;
  16. this->lightList = (Light **)calloc(sizeof(Light *), MIN_ALLOC);
  17. this->lightCount = 0;
  18. this->allocatedObjectCount = MIN_ALLOC;
  19. this->objectList = (Shape **)calloc(sizeof(Shape *), MIN_ALLOC);
  20. this->objectCount = 0;
  21. };
  22. World::~World()
  23. {
  24. /* We need to do some cleanup... */
  25. }
  26. void World::addObject(Shape *s)
  27. {
  28. if ((this->objectCount + 1) > this->allocatedObjectCount)
  29. {
  30. this->allocatedObjectCount *= 2;
  31. this->objectList = (Shape **)realloc(this->objectList, sizeof(Shape **) * this->allocatedObjectCount);
  32. }
  33. this->objectList[this->objectCount++] = s;
  34. }
  35. void World::addLight(Light *l)
  36. {
  37. if ((this->lightCount + 1) > this->allocatedLightCount)
  38. {
  39. this->allocatedLightCount *= 2;
  40. this->lightList = (Light **)realloc(this->lightList, sizeof(Light **) * this->allocatedLightCount);
  41. }
  42. this->lightList[this->lightCount++] = l;
  43. }
  44. bool World::lightIsIn(Light &l)
  45. {
  46. int i;
  47. for(i = 0; i < this->lightCount; i++)
  48. {
  49. if (*this->lightList[i] == l)
  50. {
  51. return true;
  52. }
  53. }
  54. return false;
  55. }
  56. bool World::objectIsIn(Shape &s)
  57. {
  58. int i;
  59. for(i = 0; i < this->objectCount; i++)
  60. {
  61. if (*this->objectList[i] == s)
  62. {
  63. return true;
  64. }
  65. }
  66. return false;
  67. }
  68. Intersect World::intersect(Ray r)
  69. {
  70. Intersect ret;
  71. int i, j;
  72. for(i = 0; i < this->objectCount; i++)
  73. {
  74. Intersect xs = this->objectList[i]->intersect(r);
  75. for(j = 0; j < xs.count(); j++)
  76. {
  77. ret.add(xs[j]);
  78. }
  79. }
  80. return ret;
  81. }
  82. Tuple World::shadeHit(Computation comps, uint32_t depthCount)
  83. {
  84. /* TODO: Add support for more than one light */
  85. uint32_t lightIndex;
  86. Tuple surface = Colour(0, 0, 0);
  87. for(lightIndex = 0; lightIndex < this->lightCount; lightIndex++)
  88. {
  89. bool isThereAnObstacle = this->isShadowed(comps.overHitPoint, lightIndex);
  90. surface = surface + comps.object->material.lighting(*this->lightList[lightIndex], comps.overHitPoint, comps.eyeVector,
  91. comps.normalVector, comps.object, isThereAnObstacle);
  92. }
  93. Tuple reflected = this->reflectColour(comps, depthCount);
  94. Tuple refracted = this->refractedColour(comps, depthCount);
  95. if ((comps.object->material.reflective > 0) && (comps.object->material.transparency > 0))
  96. {
  97. double reflectance = comps.schlick();
  98. return surface + reflected * reflectance + refracted * (1 - reflectance);
  99. }
  100. return surface + reflected + refracted;
  101. }
  102. Tuple World::colourAt(Ray r, uint32_t depthCount)
  103. {
  104. Intersect allHits = this->intersect(r);
  105. Intersection hit = allHits.hit();
  106. if (hit.nothing())
  107. {
  108. return Colour(0, 0, 0);
  109. }
  110. else
  111. {
  112. return this->shadeHit(hit.prepareComputation(r, &allHits), depthCount);
  113. }
  114. }
  115. bool World::isShadowed(Tuple point, uint32_t light)
  116. {
  117. /* TODO: Add support for more than one light */
  118. Tuple v = this->lightList[light]->position - point;
  119. double distance = v.magnitude();
  120. Tuple direction = v.normalise();
  121. Ray r = Ray(point, direction);
  122. Intersection h = this->intersect(r).hit();
  123. if (!h.nothing() && (h.t < distance))
  124. {
  125. return true;
  126. }
  127. return false;
  128. }
  129. Colour World::reflectColour(Computation comps, uint32_t depthCount)
  130. {
  131. if ((depthCount == 0) || (comps.object->material.reflective == 0))
  132. {
  133. return Colour(0, 0, 0);
  134. }
  135. /* So it is reflective, even just a bit. Let'sr reflect the ray! */
  136. Ray reflectedRay = Ray(comps.overHitPoint, comps.reflectVector);
  137. Tuple hitColour = this->colourAt(reflectedRay, depthCount - 1);
  138. hitColour = hitColour * comps.object->material.reflective;
  139. return Colour(hitColour.x, hitColour.y, hitColour.z);
  140. }
  141. Colour World::refractedColour(Computation comps, uint32_t depthCount)
  142. {
  143. double nRatio = comps.n1 / comps.n2;
  144. double cos_i = comps.eyeVector.dot(comps.normalVector);
  145. double sin2_t = (nRatio*nRatio) * (1 - cos_i * cos_i);
  146. if ((sin2_t > 1 ) || (depthCount == 0) || (comps.object->material.transparency == 0))
  147. {
  148. return Colour(0, 0, 0);
  149. }
  150. double cos_t = sqrt(1.0 - sin2_t);
  151. Tuple direction = comps.normalVector * (nRatio * cos_i - cos_t) - comps.eyeVector * nRatio;
  152. Ray refractedRay = Ray(comps.underHitPoint, direction);
  153. Tuple hitColour = this->colourAt(refractedRay, depthCount - 1) * comps.object->material.transparency;
  154. return Colour(hitColour.x, hitColour.y, hitColour.z);
  155. }