wiring.h 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. #ifndef CS
  2. #define CS 8
  3. #endif
  4. class GDTransport {
  5. private:
  6. byte model;
  7. public:
  8. void ios() {
  9. pinMode(CS, OUTPUT);
  10. digitalWrite(CS, HIGH);
  11. pinMode(9, OUTPUT);
  12. digitalWrite(9, HIGH);
  13. SPI.begin();
  14. // for (;;) SPI.transfer(0x33);
  15. }
  16. void begin0() {
  17. ios();
  18. SPI.begin();
  19. #ifdef TEENSYDUINO
  20. SPI.beginTransaction(SPISettings(3000000, MSBFIRST, SPI_MODE0));
  21. #else
  22. #ifndef __DUE__
  23. SPI.setClockDivider(SPI_CLOCK_DIV2);
  24. SPSR = (1 << SPI2X);
  25. #endif
  26. #endif
  27. hostcmd(0x00);
  28. #if (BOARD != BOARD_GAMEDUINO23)
  29. hostcmd(0x44); // from external crystal
  30. #endif
  31. hostcmd(0x68);
  32. }
  33. void begin1() {
  34. #if 0
  35. delay(120);
  36. #else
  37. while ((__rd16(0xc0000UL) & 0xff) != 0x08)
  38. ;
  39. #endif
  40. // Test point: saturate SPI
  41. while (0) {
  42. digitalWrite(CS, LOW);
  43. SPI.transfer(0x55);
  44. digitalWrite(CS, HIGH);
  45. }
  46. #if 0
  47. // Test point: attempt to wake up FT8xx every 2 seconds
  48. while (0) {
  49. hostcmd(0x00);
  50. delay(120);
  51. hostcmd(0x68);
  52. delay(120);
  53. digitalWrite(CS, LOW);
  54. Serial.println(SPI.transfer(0x10), HEX);
  55. Serial.println(SPI.transfer(0x24), HEX);
  56. Serial.println(SPI.transfer(0x00), HEX);
  57. Serial.println(SPI.transfer(0xff), HEX);
  58. Serial.println(SPI.transfer(0x00), HEX);
  59. Serial.println(SPI.transfer(0x00), HEX);
  60. Serial.println();
  61. digitalWrite(CS, HIGH);
  62. delay(2000);
  63. }
  64. #endif
  65. // So that FT800,801 FT81x
  66. // model 0 1
  67. ft8xx_model = __rd16(0x0c0000) >> 12;
  68. wp = 0;
  69. freespace = 4096 - 4;
  70. stream();
  71. }
  72. void cmd32(uint32_t x) {
  73. if (freespace < 4) {
  74. getfree(4);
  75. }
  76. wp += 4;
  77. freespace -= 4;
  78. union {
  79. uint32_t c;
  80. uint8_t b[4];
  81. };
  82. c = x;
  83. SPI.transfer(b[0]);
  84. SPI.transfer(b[1]);
  85. SPI.transfer(b[2]);
  86. SPI.transfer(b[3]);
  87. }
  88. void cmdbyte(byte x) {
  89. if (freespace == 0) {
  90. getfree(1);
  91. }
  92. wp++;
  93. freespace--;
  94. SPI.transfer(x);
  95. }
  96. void cmd_n(byte *s, uint16_t n) {
  97. if (freespace < n) {
  98. getfree(n);
  99. }
  100. wp += n;
  101. freespace -= n;
  102. while (n > 8) {
  103. n -= 8;
  104. SPI.transfer(*s++);
  105. SPI.transfer(*s++);
  106. SPI.transfer(*s++);
  107. SPI.transfer(*s++);
  108. SPI.transfer(*s++);
  109. SPI.transfer(*s++);
  110. SPI.transfer(*s++);
  111. SPI.transfer(*s++);
  112. }
  113. while (n--)
  114. SPI.transfer(*s++);
  115. }
  116. void flush() {
  117. getfree(0);
  118. }
  119. uint16_t rp() {
  120. uint16_t r = __rd16(REG_CMD_READ);
  121. if (r == 0xfff) {
  122. GD.alert("COPROCESSOR EXCEPTION");
  123. }
  124. return r;
  125. }
  126. void finish() {
  127. wp &= 0xffc;
  128. __end();
  129. __wr16(REG_CMD_WRITE, wp);
  130. while (rp() != wp)
  131. ;
  132. stream();
  133. }
  134. byte rd(uint32_t addr)
  135. {
  136. __end(); // stop streaming
  137. __start(addr);
  138. SPI.transfer(0); // dummy
  139. byte r = SPI.transfer(0);
  140. stream();
  141. return r;
  142. }
  143. void wr(uint32_t addr, byte v)
  144. {
  145. __end(); // stop streaming
  146. __wstart(addr);
  147. SPI.transfer(v);
  148. stream();
  149. }
  150. uint16_t rd16(uint32_t addr)
  151. {
  152. uint16_t r = 0;
  153. __end(); // stop streaming
  154. __start(addr);
  155. SPI.transfer(0);
  156. r = SPI.transfer(0);
  157. r |= (SPI.transfer(0) << 8);
  158. stream();
  159. return r;
  160. }
  161. void wr16(uint32_t addr, uint32_t v)
  162. {
  163. __end(); // stop streaming
  164. __wstart(addr);
  165. SPI.transfer(v);
  166. SPI.transfer(v >> 8);
  167. stream();
  168. }
  169. uint32_t rd32(uint32_t addr)
  170. {
  171. __end(); // stop streaming
  172. __start(addr);
  173. SPI.transfer(0);
  174. union {
  175. uint32_t c;
  176. uint8_t b[4];
  177. };
  178. b[0] = SPI.transfer(0);
  179. b[1] = SPI.transfer(0);
  180. b[2] = SPI.transfer(0);
  181. b[3] = SPI.transfer(0);
  182. stream();
  183. return c;
  184. }
  185. void rd_n(byte *dst, uint32_t addr, uint16_t n)
  186. {
  187. __end(); // stop streaming
  188. __start(addr);
  189. SPI.transfer(0);
  190. while (n--)
  191. *dst++ = SPI.transfer(0);
  192. stream();
  193. }
  194. void wr_n(uint32_t addr, byte *src, uint16_t n)
  195. {
  196. __end(); // stop streaming
  197. __wstart(addr);
  198. while (n--) {
  199. SPDR = *src++;
  200. asm volatile("nop");
  201. asm volatile("nop");
  202. asm volatile("nop");
  203. asm volatile("nop");
  204. asm volatile("nop");
  205. asm volatile("nop");
  206. asm volatile("nop");
  207. asm volatile("nop");
  208. asm volatile("nop");
  209. asm volatile("nop");
  210. }
  211. while (!(SPSR & _BV(SPIF))) ;
  212. stream();
  213. }
  214. void wr32(uint32_t addr, unsigned long v)
  215. {
  216. __end(); // stop streaming
  217. __wstart(addr);
  218. SPI.transfer(v);
  219. SPI.transfer(v >> 8);
  220. SPI.transfer(v >> 16);
  221. SPI.transfer(v >> 24);
  222. stream();
  223. }
  224. uint32_t getwp(void) {
  225. return RAM_CMD + (wp & 0xffc);
  226. }
  227. void bulk(uint32_t addr) {
  228. __end(); // stop streaming
  229. __start(addr);
  230. }
  231. void resume(void) {
  232. stream();
  233. }
  234. static void __start(uint32_t addr) // start an SPI transaction to addr
  235. {
  236. digitalWrite(CS, LOW);
  237. SPI.transfer(addr >> 16);
  238. SPI.transfer(highByte(addr));
  239. SPI.transfer(lowByte(addr));
  240. }
  241. static void __wstart(uint32_t addr) // start an SPI write transaction to addr
  242. {
  243. digitalWrite(CS, LOW);
  244. SPI.transfer(0x80 | (addr >> 16));
  245. SPI.transfer(highByte(addr));
  246. SPI.transfer(lowByte(addr));
  247. }
  248. static void __end() // end the SPI transaction
  249. {
  250. digitalWrite(CS, HIGH);
  251. }
  252. void stop() // end the SPI transaction
  253. {
  254. wp &= 0xffc;
  255. __end();
  256. __wr16(REG_CMD_WRITE, wp);
  257. // while (__rd16(REG_CMD_READ) != wp) ;
  258. }
  259. void stream(void) {
  260. __end();
  261. __wstart(RAM_CMD + (wp & 0xfff));
  262. }
  263. static unsigned int __rd16(uint32_t addr)
  264. {
  265. unsigned int r;
  266. __start(addr);
  267. SPI.transfer(0); // dummy
  268. r = SPI.transfer(0);
  269. r |= (SPI.transfer(0) << 8);
  270. __end();
  271. return r;
  272. }
  273. static void __wr16(uint32_t addr, unsigned int v)
  274. {
  275. __wstart(addr);
  276. SPI.transfer(lowByte(v));
  277. SPI.transfer(highByte(v));
  278. __end();
  279. }
  280. static void hostcmd(byte a)
  281. {
  282. digitalWrite(CS, LOW);
  283. SPI.transfer(a);
  284. SPI.transfer(0x00);
  285. SPI.transfer(0x00);
  286. digitalWrite(CS, HIGH);
  287. }
  288. void getfree(uint16_t n)
  289. {
  290. wp &= 0xfff;
  291. __end();
  292. __wr16(REG_CMD_WRITE, wp & 0xffc);
  293. do {
  294. uint16_t fullness = (wp - rp()) & 4095;
  295. freespace = (4096 - 4) - fullness;
  296. } while (freespace < n);
  297. stream();
  298. }
  299. byte streaming;
  300. uint16_t wp;
  301. uint16_t freespace;
  302. };