lmb.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <common.h>
  13. #include <lmb.h>
  14. #define LMB_ALLOC_ANYWHERE 0
  15. void lmb_dump_all(struct lmb *lmb)
  16. {
  17. #ifdef DEBUG
  18. unsigned long i;
  19. debug("lmb_dump_all:\n");
  20. debug(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
  21. debug(" memory.size = 0x%llx\n",
  22. (unsigned long long)lmb->memory.size);
  23. for (i=0; i < lmb->memory.cnt ;i++) {
  24. debug(" memory.reg[0x%lx].base = 0x%llx\n", i,
  25. (long long unsigned)lmb->memory.region[i].base);
  26. debug(" .size = 0x%llx\n",
  27. (long long unsigned)lmb->memory.region[i].size);
  28. }
  29. debug("\n reserved.cnt = 0x%lx\n",
  30. lmb->reserved.cnt);
  31. debug(" reserved.size = 0x%llx\n",
  32. (long long unsigned)lmb->reserved.size);
  33. for (i=0; i < lmb->reserved.cnt ;i++) {
  34. debug(" reserved.reg[0x%lx].base = 0x%llx\n", i,
  35. (long long unsigned)lmb->reserved.region[i].base);
  36. debug(" .size = 0x%llx\n",
  37. (long long unsigned)lmb->reserved.region[i].size);
  38. }
  39. #endif /* DEBUG */
  40. }
  41. static long lmb_addrs_overlap(phys_addr_t base1,
  42. phys_size_t size1, phys_addr_t base2, phys_size_t size2)
  43. {
  44. return ((base1 < (base2+size2)) && (base2 < (base1+size1)));
  45. }
  46. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  47. phys_addr_t base2, phys_size_t size2)
  48. {
  49. if (base2 == base1 + size1)
  50. return 1;
  51. else if (base1 == base2 + size2)
  52. return -1;
  53. return 0;
  54. }
  55. static long lmb_regions_adjacent(struct lmb_region *rgn,
  56. unsigned long r1, unsigned long r2)
  57. {
  58. phys_addr_t base1 = rgn->region[r1].base;
  59. phys_size_t size1 = rgn->region[r1].size;
  60. phys_addr_t base2 = rgn->region[r2].base;
  61. phys_size_t size2 = rgn->region[r2].size;
  62. return lmb_addrs_adjacent(base1, size1, base2, size2);
  63. }
  64. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  65. {
  66. unsigned long i;
  67. for (i = r; i < rgn->cnt - 1; i++) {
  68. rgn->region[i].base = rgn->region[i + 1].base;
  69. rgn->region[i].size = rgn->region[i + 1].size;
  70. }
  71. rgn->cnt--;
  72. }
  73. /* Assumption: base addr of region 1 < base addr of region 2 */
  74. static void lmb_coalesce_regions(struct lmb_region *rgn,
  75. unsigned long r1, unsigned long r2)
  76. {
  77. rgn->region[r1].size += rgn->region[r2].size;
  78. lmb_remove_region(rgn, r2);
  79. }
  80. void lmb_init(struct lmb *lmb)
  81. {
  82. /* Create a dummy zero size LMB which will get coalesced away later.
  83. * This simplifies the lmb_add() code below...
  84. */
  85. lmb->memory.region[0].base = 0;
  86. lmb->memory.region[0].size = 0;
  87. lmb->memory.cnt = 1;
  88. lmb->memory.size = 0;
  89. /* Ditto. */
  90. lmb->reserved.region[0].base = 0;
  91. lmb->reserved.region[0].size = 0;
  92. lmb->reserved.cnt = 1;
  93. lmb->reserved.size = 0;
  94. }
  95. /* This routine called with relocation disabled. */
  96. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size)
  97. {
  98. unsigned long coalesced = 0;
  99. long adjacent, i;
  100. if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
  101. rgn->region[0].base = base;
  102. rgn->region[0].size = size;
  103. return 0;
  104. }
  105. /* First try and coalesce this LMB with another. */
  106. for (i=0; i < rgn->cnt; i++) {
  107. phys_addr_t rgnbase = rgn->region[i].base;
  108. phys_size_t rgnsize = rgn->region[i].size;
  109. if ((rgnbase == base) && (rgnsize == size))
  110. /* Already have this region, so we're done */
  111. return 0;
  112. adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize);
  113. if ( adjacent > 0 ) {
  114. rgn->region[i].base -= size;
  115. rgn->region[i].size += size;
  116. coalesced++;
  117. break;
  118. }
  119. else if ( adjacent < 0 ) {
  120. rgn->region[i].size += size;
  121. coalesced++;
  122. break;
  123. }
  124. }
  125. if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) {
  126. lmb_coalesce_regions(rgn, i, i+1);
  127. coalesced++;
  128. }
  129. if (coalesced)
  130. return coalesced;
  131. if (rgn->cnt >= MAX_LMB_REGIONS)
  132. return -1;
  133. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  134. for (i = rgn->cnt-1; i >= 0; i--) {
  135. if (base < rgn->region[i].base) {
  136. rgn->region[i+1].base = rgn->region[i].base;
  137. rgn->region[i+1].size = rgn->region[i].size;
  138. } else {
  139. rgn->region[i+1].base = base;
  140. rgn->region[i+1].size = size;
  141. break;
  142. }
  143. }
  144. if (base < rgn->region[0].base) {
  145. rgn->region[0].base = base;
  146. rgn->region[0].size = size;
  147. }
  148. rgn->cnt++;
  149. return 0;
  150. }
  151. /* This routine may be called with relocation disabled. */
  152. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  153. {
  154. struct lmb_region *_rgn = &(lmb->memory);
  155. return lmb_add_region(_rgn, base, size);
  156. }
  157. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  158. {
  159. struct lmb_region *rgn = &(lmb->reserved);
  160. phys_addr_t rgnbegin, rgnend;
  161. phys_addr_t end = base + size;
  162. int i;
  163. rgnbegin = rgnend = 0; /* supress gcc warnings */
  164. /* Find the region where (base, size) belongs to */
  165. for (i=0; i < rgn->cnt; i++) {
  166. rgnbegin = rgn->region[i].base;
  167. rgnend = rgnbegin + rgn->region[i].size;
  168. if ((rgnbegin <= base) && (end <= rgnend))
  169. break;
  170. }
  171. /* Didn't find the region */
  172. if (i == rgn->cnt)
  173. return -1;
  174. /* Check to see if we are removing entire region */
  175. if ((rgnbegin == base) && (rgnend == end)) {
  176. lmb_remove_region(rgn, i);
  177. return 0;
  178. }
  179. /* Check to see if region is matching at the front */
  180. if (rgnbegin == base) {
  181. rgn->region[i].base = end;
  182. rgn->region[i].size -= size;
  183. return 0;
  184. }
  185. /* Check to see if the region is matching at the end */
  186. if (rgnend == end) {
  187. rgn->region[i].size -= size;
  188. return 0;
  189. }
  190. /*
  191. * We need to split the entry - adjust the current one to the
  192. * beginging of the hole and add the region after hole.
  193. */
  194. rgn->region[i].size = base - rgn->region[i].base;
  195. return lmb_add_region(rgn, end, rgnend - end);
  196. }
  197. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  198. {
  199. struct lmb_region *_rgn = &(lmb->reserved);
  200. return lmb_add_region(_rgn, base, size);
  201. }
  202. long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  203. phys_size_t size)
  204. {
  205. unsigned long i;
  206. for (i=0; i < rgn->cnt; i++) {
  207. phys_addr_t rgnbase = rgn->region[i].base;
  208. phys_size_t rgnsize = rgn->region[i].size;
  209. if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) {
  210. break;
  211. }
  212. }
  213. return (i < rgn->cnt) ? i : -1;
  214. }
  215. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  216. {
  217. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  218. }
  219. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  220. {
  221. phys_addr_t alloc;
  222. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  223. if (alloc == 0)
  224. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  225. (ulong)size, (ulong)max_addr);
  226. return alloc;
  227. }
  228. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  229. {
  230. return addr & ~(size - 1);
  231. }
  232. static phys_addr_t lmb_align_up(phys_addr_t addr, ulong size)
  233. {
  234. return (addr + (size - 1)) & ~(size - 1);
  235. }
  236. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  237. {
  238. long i, j;
  239. phys_addr_t base = 0;
  240. phys_addr_t res_base;
  241. for (i = lmb->memory.cnt-1; i >= 0; i--) {
  242. phys_addr_t lmbbase = lmb->memory.region[i].base;
  243. phys_size_t lmbsize = lmb->memory.region[i].size;
  244. if (lmbsize < size)
  245. continue;
  246. if (max_addr == LMB_ALLOC_ANYWHERE)
  247. base = lmb_align_down(lmbbase + lmbsize - size, align);
  248. else if (lmbbase < max_addr) {
  249. base = min(lmbbase + lmbsize, max_addr);
  250. base = lmb_align_down(base - size, align);
  251. } else
  252. continue;
  253. while (base && lmbbase <= base) {
  254. j = lmb_overlaps_region(&lmb->reserved, base, size);
  255. if (j < 0) {
  256. /* This area isn't reserved, take it */
  257. if (lmb_add_region(&lmb->reserved, base,
  258. lmb_align_up(size,
  259. align)) < 0)
  260. return 0;
  261. return base;
  262. }
  263. res_base = lmb->reserved.region[j].base;
  264. if (res_base < size)
  265. break;
  266. base = lmb_align_down(res_base - size, align);
  267. }
  268. }
  269. return 0;
  270. }
  271. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  272. {
  273. int i;
  274. for (i = 0; i < lmb->reserved.cnt; i++) {
  275. phys_addr_t upper = lmb->reserved.region[i].base +
  276. lmb->reserved.region[i].size - 1;
  277. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  278. return 1;
  279. }
  280. return 0;
  281. }
  282. void __board_lmb_reserve(struct lmb *lmb)
  283. {
  284. /* please define platform specific board_lmb_reserve() */
  285. }
  286. void board_lmb_reserve(struct lmb *lmb) __attribute__((weak, alias("__board_lmb_reserve")));
  287. void __arch_lmb_reserve(struct lmb *lmb)
  288. {
  289. /* please define platform specific arch_lmb_reserve() */
  290. }
  291. void arch_lmb_reserve(struct lmb *lmb) __attribute__((weak, alias("__arch_lmb_reserve")));