mmc.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2003
  4. * Kyle Harris, kharris@nexus-tech.net
  5. */
  6. #include <common.h>
  7. #include <blk.h>
  8. #include <command.h>
  9. #include <console.h>
  10. #include <mmc.h>
  11. #include <part.h>
  12. #include <sparse_format.h>
  13. #include <image-sparse.h>
  14. static int curr_device = -1;
  15. static void print_mmcinfo(struct mmc *mmc)
  16. {
  17. int i;
  18. printf("Device: %s\n", mmc->cfg->name);
  19. printf("Manufacturer ID: %x\n", mmc->cid[0] >> 24);
  20. printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xffff);
  21. printf("Name: %c%c%c%c%c \n", mmc->cid[0] & 0xff,
  22. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  23. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  24. printf("Bus Speed: %d\n", mmc->clock);
  25. #if CONFIG_IS_ENABLED(MMC_VERBOSE)
  26. printf("Mode: %s\n", mmc_mode_name(mmc->selected_mode));
  27. mmc_dump_capabilities("card capabilities", mmc->card_caps);
  28. mmc_dump_capabilities("host capabilities", mmc->host_caps);
  29. #endif
  30. printf("Rd Block Len: %d\n", mmc->read_bl_len);
  31. printf("%s version %d.%d", IS_SD(mmc) ? "SD" : "MMC",
  32. EXTRACT_SDMMC_MAJOR_VERSION(mmc->version),
  33. EXTRACT_SDMMC_MINOR_VERSION(mmc->version));
  34. if (EXTRACT_SDMMC_CHANGE_VERSION(mmc->version) != 0)
  35. printf(".%d", EXTRACT_SDMMC_CHANGE_VERSION(mmc->version));
  36. printf("\n");
  37. printf("High Capacity: %s\n", mmc->high_capacity ? "Yes" : "No");
  38. puts("Capacity: ");
  39. print_size(mmc->capacity, "\n");
  40. printf("Bus Width: %d-bit%s\n", mmc->bus_width,
  41. mmc->ddr_mode ? " DDR" : "");
  42. #if CONFIG_IS_ENABLED(MMC_WRITE)
  43. puts("Erase Group Size: ");
  44. print_size(((u64)mmc->erase_grp_size) << 9, "\n");
  45. #endif
  46. if (!IS_SD(mmc) && mmc->version >= MMC_VERSION_4_41) {
  47. bool has_enh = (mmc->part_support & ENHNCD_SUPPORT) != 0;
  48. bool usr_enh = has_enh && (mmc->part_attr & EXT_CSD_ENH_USR);
  49. u8 wp, ext_csd[MMC_MAX_BLOCK_LEN];
  50. int ret;
  51. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  52. puts("HC WP Group Size: ");
  53. print_size(((u64)mmc->hc_wp_grp_size) << 9, "\n");
  54. #endif
  55. puts("User Capacity: ");
  56. print_size(mmc->capacity_user, usr_enh ? " ENH" : "");
  57. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_USR)
  58. puts(" WRREL\n");
  59. else
  60. putc('\n');
  61. if (usr_enh) {
  62. puts("User Enhanced Start: ");
  63. print_size(mmc->enh_user_start, "\n");
  64. puts("User Enhanced Size: ");
  65. print_size(mmc->enh_user_size, "\n");
  66. }
  67. puts("Boot Capacity: ");
  68. print_size(mmc->capacity_boot, has_enh ? " ENH\n" : "\n");
  69. puts("RPMB Capacity: ");
  70. print_size(mmc->capacity_rpmb, has_enh ? " ENH\n" : "\n");
  71. for (i = 0; i < ARRAY_SIZE(mmc->capacity_gp); i++) {
  72. bool is_enh = has_enh &&
  73. (mmc->part_attr & EXT_CSD_ENH_GP(i));
  74. if (mmc->capacity_gp[i]) {
  75. printf("GP%i Capacity: ", i+1);
  76. print_size(mmc->capacity_gp[i],
  77. is_enh ? " ENH" : "");
  78. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_GP(i))
  79. puts(" WRREL\n");
  80. else
  81. putc('\n');
  82. }
  83. }
  84. ret = mmc_send_ext_csd(mmc, ext_csd);
  85. if (ret)
  86. return;
  87. wp = ext_csd[EXT_CSD_BOOT_WP_STATUS];
  88. for (i = 0; i < 2; ++i) {
  89. printf("Boot area %d is ", i);
  90. switch (wp & 3) {
  91. case 0:
  92. printf("not write protected\n");
  93. break;
  94. case 1:
  95. printf("power on protected\n");
  96. break;
  97. case 2:
  98. printf("permanently protected\n");
  99. break;
  100. default:
  101. printf("in reserved protection state\n");
  102. break;
  103. }
  104. wp >>= 2;
  105. }
  106. }
  107. }
  108. static struct mmc *init_mmc_device(int dev, bool force_init)
  109. {
  110. struct mmc *mmc;
  111. mmc = find_mmc_device(dev);
  112. if (!mmc) {
  113. printf("no mmc device at slot %x\n", dev);
  114. return NULL;
  115. }
  116. if (!mmc_getcd(mmc))
  117. force_init = true;
  118. if (force_init)
  119. mmc->has_init = 0;
  120. if (mmc_init(mmc))
  121. return NULL;
  122. #ifdef CONFIG_BLOCK_CACHE
  123. struct blk_desc *bd = mmc_get_blk_desc(mmc);
  124. blkcache_invalidate(bd->if_type, bd->devnum);
  125. #endif
  126. return mmc;
  127. }
  128. static int do_mmcinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  129. {
  130. struct mmc *mmc;
  131. if (curr_device < 0) {
  132. if (get_mmc_num() > 0)
  133. curr_device = 0;
  134. else {
  135. puts("No MMC device available\n");
  136. return 1;
  137. }
  138. }
  139. mmc = init_mmc_device(curr_device, false);
  140. if (!mmc)
  141. return CMD_RET_FAILURE;
  142. print_mmcinfo(mmc);
  143. return CMD_RET_SUCCESS;
  144. }
  145. #if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
  146. static int confirm_key_prog(void)
  147. {
  148. puts("Warning: Programming authentication key can be done only once !\n"
  149. " Use this command only if you are sure of what you are doing,\n"
  150. "Really perform the key programming? <y/N> ");
  151. if (confirm_yesno())
  152. return 1;
  153. puts("Authentication key programming aborted\n");
  154. return 0;
  155. }
  156. static int do_mmcrpmb_key(cmd_tbl_t *cmdtp, int flag,
  157. int argc, char * const argv[])
  158. {
  159. void *key_addr;
  160. struct mmc *mmc = find_mmc_device(curr_device);
  161. if (argc != 2)
  162. return CMD_RET_USAGE;
  163. key_addr = (void *)simple_strtoul(argv[1], NULL, 16);
  164. if (!confirm_key_prog())
  165. return CMD_RET_FAILURE;
  166. if (mmc_rpmb_set_key(mmc, key_addr)) {
  167. printf("ERROR - Key already programmed ?\n");
  168. return CMD_RET_FAILURE;
  169. }
  170. return CMD_RET_SUCCESS;
  171. }
  172. static int do_mmcrpmb_read(cmd_tbl_t *cmdtp, int flag,
  173. int argc, char * const argv[])
  174. {
  175. u16 blk, cnt;
  176. void *addr;
  177. int n;
  178. void *key_addr = NULL;
  179. struct mmc *mmc = find_mmc_device(curr_device);
  180. if (argc < 4)
  181. return CMD_RET_USAGE;
  182. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  183. blk = simple_strtoul(argv[2], NULL, 16);
  184. cnt = simple_strtoul(argv[3], NULL, 16);
  185. if (argc == 5)
  186. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  187. printf("\nMMC RPMB read: dev # %d, block # %d, count %d ... ",
  188. curr_device, blk, cnt);
  189. n = mmc_rpmb_read(mmc, addr, blk, cnt, key_addr);
  190. printf("%d RPMB blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  191. if (n != cnt)
  192. return CMD_RET_FAILURE;
  193. return CMD_RET_SUCCESS;
  194. }
  195. static int do_mmcrpmb_write(cmd_tbl_t *cmdtp, int flag,
  196. int argc, char * const argv[])
  197. {
  198. u16 blk, cnt;
  199. void *addr;
  200. int n;
  201. void *key_addr;
  202. struct mmc *mmc = find_mmc_device(curr_device);
  203. if (argc != 5)
  204. return CMD_RET_USAGE;
  205. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  206. blk = simple_strtoul(argv[2], NULL, 16);
  207. cnt = simple_strtoul(argv[3], NULL, 16);
  208. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  209. printf("\nMMC RPMB write: dev # %d, block # %d, count %d ... ",
  210. curr_device, blk, cnt);
  211. n = mmc_rpmb_write(mmc, addr, blk, cnt, key_addr);
  212. printf("%d RPMB blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  213. if (n != cnt)
  214. return CMD_RET_FAILURE;
  215. return CMD_RET_SUCCESS;
  216. }
  217. static int do_mmcrpmb_counter(cmd_tbl_t *cmdtp, int flag,
  218. int argc, char * const argv[])
  219. {
  220. unsigned long counter;
  221. struct mmc *mmc = find_mmc_device(curr_device);
  222. if (mmc_rpmb_get_counter(mmc, &counter))
  223. return CMD_RET_FAILURE;
  224. printf("RPMB Write counter= %lx\n", counter);
  225. return CMD_RET_SUCCESS;
  226. }
  227. static cmd_tbl_t cmd_rpmb[] = {
  228. U_BOOT_CMD_MKENT(key, 2, 0, do_mmcrpmb_key, "", ""),
  229. U_BOOT_CMD_MKENT(read, 5, 1, do_mmcrpmb_read, "", ""),
  230. U_BOOT_CMD_MKENT(write, 5, 0, do_mmcrpmb_write, "", ""),
  231. U_BOOT_CMD_MKENT(counter, 1, 1, do_mmcrpmb_counter, "", ""),
  232. };
  233. static int do_mmcrpmb(cmd_tbl_t *cmdtp, int flag,
  234. int argc, char * const argv[])
  235. {
  236. cmd_tbl_t *cp;
  237. struct mmc *mmc;
  238. char original_part;
  239. int ret;
  240. cp = find_cmd_tbl(argv[1], cmd_rpmb, ARRAY_SIZE(cmd_rpmb));
  241. /* Drop the rpmb subcommand */
  242. argc--;
  243. argv++;
  244. if (cp == NULL || argc > cp->maxargs)
  245. return CMD_RET_USAGE;
  246. if (flag == CMD_FLAG_REPEAT && !cmd_is_repeatable(cp))
  247. return CMD_RET_SUCCESS;
  248. mmc = init_mmc_device(curr_device, false);
  249. if (!mmc)
  250. return CMD_RET_FAILURE;
  251. if (!(mmc->version & MMC_VERSION_MMC)) {
  252. printf("It is not an eMMC device\n");
  253. return CMD_RET_FAILURE;
  254. }
  255. if (mmc->version < MMC_VERSION_4_41) {
  256. printf("RPMB not supported before version 4.41\n");
  257. return CMD_RET_FAILURE;
  258. }
  259. /* Switch to the RPMB partition */
  260. #ifndef CONFIG_BLK
  261. original_part = mmc->block_dev.hwpart;
  262. #else
  263. original_part = mmc_get_blk_desc(mmc)->hwpart;
  264. #endif
  265. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, MMC_PART_RPMB) !=
  266. 0)
  267. return CMD_RET_FAILURE;
  268. ret = cp->cmd(cmdtp, flag, argc, argv);
  269. /* Return to original partition */
  270. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, original_part) !=
  271. 0)
  272. return CMD_RET_FAILURE;
  273. return ret;
  274. }
  275. #endif
  276. static int do_mmc_read(cmd_tbl_t *cmdtp, int flag,
  277. int argc, char * const argv[])
  278. {
  279. struct mmc *mmc;
  280. u32 blk, cnt, n;
  281. void *addr;
  282. if (argc != 4)
  283. return CMD_RET_USAGE;
  284. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  285. blk = simple_strtoul(argv[2], NULL, 16);
  286. cnt = simple_strtoul(argv[3], NULL, 16);
  287. mmc = init_mmc_device(curr_device, false);
  288. if (!mmc)
  289. return CMD_RET_FAILURE;
  290. printf("\nMMC read: dev # %d, block # %d, count %d ... ",
  291. curr_device, blk, cnt);
  292. n = blk_dread(mmc_get_blk_desc(mmc), blk, cnt, addr);
  293. printf("%d blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  294. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  295. }
  296. #if CONFIG_IS_ENABLED(CMD_MMC_SWRITE)
  297. static lbaint_t mmc_sparse_write(struct sparse_storage *info, lbaint_t blk,
  298. lbaint_t blkcnt, const void *buffer)
  299. {
  300. struct blk_desc *dev_desc = info->priv;
  301. return blk_dwrite(dev_desc, blk, blkcnt, buffer);
  302. }
  303. static lbaint_t mmc_sparse_reserve(struct sparse_storage *info,
  304. lbaint_t blk, lbaint_t blkcnt)
  305. {
  306. return blkcnt;
  307. }
  308. static int do_mmc_sparse_write(cmd_tbl_t *cmdtp, int flag,
  309. int argc, char * const argv[])
  310. {
  311. struct sparse_storage sparse;
  312. struct blk_desc *dev_desc;
  313. struct mmc *mmc;
  314. char dest[11];
  315. void *addr;
  316. u32 blk;
  317. if (argc != 3)
  318. return CMD_RET_USAGE;
  319. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  320. blk = simple_strtoul(argv[2], NULL, 16);
  321. if (!is_sparse_image(addr)) {
  322. printf("Not a sparse image\n");
  323. return CMD_RET_FAILURE;
  324. }
  325. mmc = init_mmc_device(curr_device, false);
  326. if (!mmc)
  327. return CMD_RET_FAILURE;
  328. printf("\nMMC Sparse write: dev # %d, block # %d ... ",
  329. curr_device, blk);
  330. if (mmc_getwp(mmc) == 1) {
  331. printf("Error: card is write protected!\n");
  332. return CMD_RET_FAILURE;
  333. }
  334. dev_desc = mmc_get_blk_desc(mmc);
  335. sparse.priv = dev_desc;
  336. sparse.blksz = 512;
  337. sparse.start = blk;
  338. sparse.size = dev_desc->lba - blk;
  339. sparse.write = mmc_sparse_write;
  340. sparse.reserve = mmc_sparse_reserve;
  341. sparse.mssg = NULL;
  342. sprintf(dest, "0x" LBAF, sparse.start * sparse.blksz);
  343. if (write_sparse_image(&sparse, dest, addr, NULL))
  344. return CMD_RET_FAILURE;
  345. else
  346. return CMD_RET_SUCCESS;
  347. }
  348. #endif
  349. #if CONFIG_IS_ENABLED(MMC_WRITE)
  350. static int do_mmc_write(cmd_tbl_t *cmdtp, int flag,
  351. int argc, char * const argv[])
  352. {
  353. struct mmc *mmc;
  354. u32 blk, cnt, n;
  355. void *addr;
  356. if (argc != 4)
  357. return CMD_RET_USAGE;
  358. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  359. blk = simple_strtoul(argv[2], NULL, 16);
  360. cnt = simple_strtoul(argv[3], NULL, 16);
  361. mmc = init_mmc_device(curr_device, false);
  362. if (!mmc)
  363. return CMD_RET_FAILURE;
  364. printf("\nMMC write: dev # %d, block # %d, count %d ... ",
  365. curr_device, blk, cnt);
  366. if (mmc_getwp(mmc) == 1) {
  367. printf("Error: card is write protected!\n");
  368. return CMD_RET_FAILURE;
  369. }
  370. n = blk_dwrite(mmc_get_blk_desc(mmc), blk, cnt, addr);
  371. printf("%d blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  372. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  373. }
  374. static int do_mmc_erase(cmd_tbl_t *cmdtp, int flag,
  375. int argc, char * const argv[])
  376. {
  377. struct mmc *mmc;
  378. u32 blk, cnt, n;
  379. if (argc != 3)
  380. return CMD_RET_USAGE;
  381. blk = simple_strtoul(argv[1], NULL, 16);
  382. cnt = simple_strtoul(argv[2], NULL, 16);
  383. mmc = init_mmc_device(curr_device, false);
  384. if (!mmc)
  385. return CMD_RET_FAILURE;
  386. printf("\nMMC erase: dev # %d, block # %d, count %d ... ",
  387. curr_device, blk, cnt);
  388. if (mmc_getwp(mmc) == 1) {
  389. printf("Error: card is write protected!\n");
  390. return CMD_RET_FAILURE;
  391. }
  392. n = blk_derase(mmc_get_blk_desc(mmc), blk, cnt);
  393. printf("%d blocks erased: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  394. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  395. }
  396. #endif
  397. static int do_mmc_rescan(cmd_tbl_t *cmdtp, int flag,
  398. int argc, char * const argv[])
  399. {
  400. struct mmc *mmc;
  401. mmc = init_mmc_device(curr_device, true);
  402. if (!mmc)
  403. return CMD_RET_FAILURE;
  404. return CMD_RET_SUCCESS;
  405. }
  406. static int do_mmc_part(cmd_tbl_t *cmdtp, int flag,
  407. int argc, char * const argv[])
  408. {
  409. struct blk_desc *mmc_dev;
  410. struct mmc *mmc;
  411. mmc = init_mmc_device(curr_device, false);
  412. if (!mmc)
  413. return CMD_RET_FAILURE;
  414. mmc_dev = blk_get_devnum_by_type(IF_TYPE_MMC, curr_device);
  415. if (mmc_dev != NULL && mmc_dev->type != DEV_TYPE_UNKNOWN) {
  416. part_print(mmc_dev);
  417. return CMD_RET_SUCCESS;
  418. }
  419. puts("get mmc type error!\n");
  420. return CMD_RET_FAILURE;
  421. }
  422. static int do_mmc_dev(cmd_tbl_t *cmdtp, int flag,
  423. int argc, char * const argv[])
  424. {
  425. int dev, part = 0, ret;
  426. struct mmc *mmc;
  427. if (argc == 1) {
  428. dev = curr_device;
  429. } else if (argc == 2) {
  430. dev = simple_strtoul(argv[1], NULL, 10);
  431. } else if (argc == 3) {
  432. dev = (int)simple_strtoul(argv[1], NULL, 10);
  433. part = (int)simple_strtoul(argv[2], NULL, 10);
  434. if (part > PART_ACCESS_MASK) {
  435. printf("#part_num shouldn't be larger than %d\n",
  436. PART_ACCESS_MASK);
  437. return CMD_RET_FAILURE;
  438. }
  439. } else {
  440. return CMD_RET_USAGE;
  441. }
  442. mmc = init_mmc_device(dev, true);
  443. if (!mmc)
  444. return CMD_RET_FAILURE;
  445. ret = blk_select_hwpart_devnum(IF_TYPE_MMC, dev, part);
  446. printf("switch to partitions #%d, %s\n",
  447. part, (!ret) ? "OK" : "ERROR");
  448. if (ret)
  449. return 1;
  450. curr_device = dev;
  451. if (mmc->part_config == MMCPART_NOAVAILABLE)
  452. printf("mmc%d is current device\n", curr_device);
  453. else
  454. printf("mmc%d(part %d) is current device\n",
  455. curr_device, mmc_get_blk_desc(mmc)->hwpart);
  456. return CMD_RET_SUCCESS;
  457. }
  458. static int do_mmc_list(cmd_tbl_t *cmdtp, int flag,
  459. int argc, char * const argv[])
  460. {
  461. print_mmc_devices('\n');
  462. return CMD_RET_SUCCESS;
  463. }
  464. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  465. static int parse_hwpart_user(struct mmc_hwpart_conf *pconf,
  466. int argc, char * const argv[])
  467. {
  468. int i = 0;
  469. memset(&pconf->user, 0, sizeof(pconf->user));
  470. while (i < argc) {
  471. if (!strcmp(argv[i], "enh")) {
  472. if (i + 2 >= argc)
  473. return -1;
  474. pconf->user.enh_start =
  475. simple_strtoul(argv[i+1], NULL, 10);
  476. pconf->user.enh_size =
  477. simple_strtoul(argv[i+2], NULL, 10);
  478. i += 3;
  479. } else if (!strcmp(argv[i], "wrrel")) {
  480. if (i + 1 >= argc)
  481. return -1;
  482. pconf->user.wr_rel_change = 1;
  483. if (!strcmp(argv[i+1], "on"))
  484. pconf->user.wr_rel_set = 1;
  485. else if (!strcmp(argv[i+1], "off"))
  486. pconf->user.wr_rel_set = 0;
  487. else
  488. return -1;
  489. i += 2;
  490. } else {
  491. break;
  492. }
  493. }
  494. return i;
  495. }
  496. static int parse_hwpart_gp(struct mmc_hwpart_conf *pconf, int pidx,
  497. int argc, char * const argv[])
  498. {
  499. int i;
  500. memset(&pconf->gp_part[pidx], 0, sizeof(pconf->gp_part[pidx]));
  501. if (1 >= argc)
  502. return -1;
  503. pconf->gp_part[pidx].size = simple_strtoul(argv[0], NULL, 10);
  504. i = 1;
  505. while (i < argc) {
  506. if (!strcmp(argv[i], "enh")) {
  507. pconf->gp_part[pidx].enhanced = 1;
  508. i += 1;
  509. } else if (!strcmp(argv[i], "wrrel")) {
  510. if (i + 1 >= argc)
  511. return -1;
  512. pconf->gp_part[pidx].wr_rel_change = 1;
  513. if (!strcmp(argv[i+1], "on"))
  514. pconf->gp_part[pidx].wr_rel_set = 1;
  515. else if (!strcmp(argv[i+1], "off"))
  516. pconf->gp_part[pidx].wr_rel_set = 0;
  517. else
  518. return -1;
  519. i += 2;
  520. } else {
  521. break;
  522. }
  523. }
  524. return i;
  525. }
  526. static int do_mmc_hwpartition(cmd_tbl_t *cmdtp, int flag,
  527. int argc, char * const argv[])
  528. {
  529. struct mmc *mmc;
  530. struct mmc_hwpart_conf pconf = { };
  531. enum mmc_hwpart_conf_mode mode = MMC_HWPART_CONF_CHECK;
  532. int i, r, pidx;
  533. mmc = init_mmc_device(curr_device, false);
  534. if (!mmc)
  535. return CMD_RET_FAILURE;
  536. if (argc < 1)
  537. return CMD_RET_USAGE;
  538. i = 1;
  539. while (i < argc) {
  540. if (!strcmp(argv[i], "user")) {
  541. i++;
  542. r = parse_hwpart_user(&pconf, argc-i, &argv[i]);
  543. if (r < 0)
  544. return CMD_RET_USAGE;
  545. i += r;
  546. } else if (!strncmp(argv[i], "gp", 2) &&
  547. strlen(argv[i]) == 3 &&
  548. argv[i][2] >= '1' && argv[i][2] <= '4') {
  549. pidx = argv[i][2] - '1';
  550. i++;
  551. r = parse_hwpart_gp(&pconf, pidx, argc-i, &argv[i]);
  552. if (r < 0)
  553. return CMD_RET_USAGE;
  554. i += r;
  555. } else if (!strcmp(argv[i], "check")) {
  556. mode = MMC_HWPART_CONF_CHECK;
  557. i++;
  558. } else if (!strcmp(argv[i], "set")) {
  559. mode = MMC_HWPART_CONF_SET;
  560. i++;
  561. } else if (!strcmp(argv[i], "complete")) {
  562. mode = MMC_HWPART_CONF_COMPLETE;
  563. i++;
  564. } else {
  565. return CMD_RET_USAGE;
  566. }
  567. }
  568. puts("Partition configuration:\n");
  569. if (pconf.user.enh_size) {
  570. puts("\tUser Enhanced Start: ");
  571. print_size(((u64)pconf.user.enh_start) << 9, "\n");
  572. puts("\tUser Enhanced Size: ");
  573. print_size(((u64)pconf.user.enh_size) << 9, "\n");
  574. } else {
  575. puts("\tNo enhanced user data area\n");
  576. }
  577. if (pconf.user.wr_rel_change)
  578. printf("\tUser partition write reliability: %s\n",
  579. pconf.user.wr_rel_set ? "on" : "off");
  580. for (pidx = 0; pidx < 4; pidx++) {
  581. if (pconf.gp_part[pidx].size) {
  582. printf("\tGP%i Capacity: ", pidx+1);
  583. print_size(((u64)pconf.gp_part[pidx].size) << 9,
  584. pconf.gp_part[pidx].enhanced ?
  585. " ENH\n" : "\n");
  586. } else {
  587. printf("\tNo GP%i partition\n", pidx+1);
  588. }
  589. if (pconf.gp_part[pidx].wr_rel_change)
  590. printf("\tGP%i write reliability: %s\n", pidx+1,
  591. pconf.gp_part[pidx].wr_rel_set ? "on" : "off");
  592. }
  593. if (!mmc_hwpart_config(mmc, &pconf, mode)) {
  594. if (mode == MMC_HWPART_CONF_COMPLETE)
  595. puts("Partitioning successful, "
  596. "power-cycle to make effective\n");
  597. return CMD_RET_SUCCESS;
  598. } else {
  599. puts("Failed!\n");
  600. return CMD_RET_FAILURE;
  601. }
  602. }
  603. #endif
  604. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  605. static int do_mmc_bootbus(cmd_tbl_t *cmdtp, int flag,
  606. int argc, char * const argv[])
  607. {
  608. int dev;
  609. struct mmc *mmc;
  610. u8 width, reset, mode;
  611. if (argc != 5)
  612. return CMD_RET_USAGE;
  613. dev = simple_strtoul(argv[1], NULL, 10);
  614. width = simple_strtoul(argv[2], NULL, 10);
  615. reset = simple_strtoul(argv[3], NULL, 10);
  616. mode = simple_strtoul(argv[4], NULL, 10);
  617. mmc = init_mmc_device(dev, false);
  618. if (!mmc)
  619. return CMD_RET_FAILURE;
  620. if (IS_SD(mmc)) {
  621. puts("BOOT_BUS_WIDTH only exists on eMMC\n");
  622. return CMD_RET_FAILURE;
  623. }
  624. /* acknowledge to be sent during boot operation */
  625. return mmc_set_boot_bus_width(mmc, width, reset, mode);
  626. }
  627. static int do_mmc_boot_resize(cmd_tbl_t *cmdtp, int flag,
  628. int argc, char * const argv[])
  629. {
  630. int dev;
  631. struct mmc *mmc;
  632. u32 bootsize, rpmbsize;
  633. if (argc != 4)
  634. return CMD_RET_USAGE;
  635. dev = simple_strtoul(argv[1], NULL, 10);
  636. bootsize = simple_strtoul(argv[2], NULL, 10);
  637. rpmbsize = simple_strtoul(argv[3], NULL, 10);
  638. mmc = init_mmc_device(dev, false);
  639. if (!mmc)
  640. return CMD_RET_FAILURE;
  641. if (IS_SD(mmc)) {
  642. printf("It is not an eMMC device\n");
  643. return CMD_RET_FAILURE;
  644. }
  645. if (mmc_boot_partition_size_change(mmc, bootsize, rpmbsize)) {
  646. printf("EMMC boot partition Size change Failed.\n");
  647. return CMD_RET_FAILURE;
  648. }
  649. printf("EMMC boot partition Size %d MB\n", bootsize);
  650. printf("EMMC RPMB partition Size %d MB\n", rpmbsize);
  651. return CMD_RET_SUCCESS;
  652. }
  653. static int mmc_partconf_print(struct mmc *mmc)
  654. {
  655. u8 ack, access, part;
  656. if (mmc->part_config == MMCPART_NOAVAILABLE) {
  657. printf("No part_config info for ver. 0x%x\n", mmc->version);
  658. return CMD_RET_FAILURE;
  659. }
  660. access = EXT_CSD_EXTRACT_PARTITION_ACCESS(mmc->part_config);
  661. ack = EXT_CSD_EXTRACT_BOOT_ACK(mmc->part_config);
  662. part = EXT_CSD_EXTRACT_BOOT_PART(mmc->part_config);
  663. printf("EXT_CSD[179], PARTITION_CONFIG:\n"
  664. "BOOT_ACK: 0x%x\n"
  665. "BOOT_PARTITION_ENABLE: 0x%x\n"
  666. "PARTITION_ACCESS: 0x%x\n", ack, part, access);
  667. return CMD_RET_SUCCESS;
  668. }
  669. static int do_mmc_partconf(cmd_tbl_t *cmdtp, int flag,
  670. int argc, char * const argv[])
  671. {
  672. int dev;
  673. struct mmc *mmc;
  674. u8 ack, part_num, access;
  675. if (argc != 2 && argc != 5)
  676. return CMD_RET_USAGE;
  677. dev = simple_strtoul(argv[1], NULL, 10);
  678. mmc = init_mmc_device(dev, false);
  679. if (!mmc)
  680. return CMD_RET_FAILURE;
  681. if (IS_SD(mmc)) {
  682. puts("PARTITION_CONFIG only exists on eMMC\n");
  683. return CMD_RET_FAILURE;
  684. }
  685. if (argc == 2)
  686. return mmc_partconf_print(mmc);
  687. ack = simple_strtoul(argv[2], NULL, 10);
  688. part_num = simple_strtoul(argv[3], NULL, 10);
  689. access = simple_strtoul(argv[4], NULL, 10);
  690. /* acknowledge to be sent during boot operation */
  691. return mmc_set_part_conf(mmc, ack, part_num, access);
  692. }
  693. static int do_mmc_rst_func(cmd_tbl_t *cmdtp, int flag,
  694. int argc, char * const argv[])
  695. {
  696. int dev;
  697. struct mmc *mmc;
  698. u8 enable;
  699. /*
  700. * Set the RST_n_ENABLE bit of RST_n_FUNCTION
  701. * The only valid values are 0x0, 0x1 and 0x2 and writing
  702. * a value of 0x1 or 0x2 sets the value permanently.
  703. */
  704. if (argc != 3)
  705. return CMD_RET_USAGE;
  706. dev = simple_strtoul(argv[1], NULL, 10);
  707. enable = simple_strtoul(argv[2], NULL, 10);
  708. if (enable > 2) {
  709. puts("Invalid RST_n_ENABLE value\n");
  710. return CMD_RET_USAGE;
  711. }
  712. mmc = init_mmc_device(dev, false);
  713. if (!mmc)
  714. return CMD_RET_FAILURE;
  715. if (IS_SD(mmc)) {
  716. puts("RST_n_FUNCTION only exists on eMMC\n");
  717. return CMD_RET_FAILURE;
  718. }
  719. return mmc_set_rst_n_function(mmc, enable);
  720. }
  721. #endif
  722. static int do_mmc_setdsr(cmd_tbl_t *cmdtp, int flag,
  723. int argc, char * const argv[])
  724. {
  725. struct mmc *mmc;
  726. u32 val;
  727. int ret;
  728. if (argc != 2)
  729. return CMD_RET_USAGE;
  730. val = simple_strtoul(argv[1], NULL, 16);
  731. mmc = find_mmc_device(curr_device);
  732. if (!mmc) {
  733. printf("no mmc device at slot %x\n", curr_device);
  734. return CMD_RET_FAILURE;
  735. }
  736. ret = mmc_set_dsr(mmc, val);
  737. printf("set dsr %s\n", (!ret) ? "OK, force rescan" : "ERROR");
  738. if (!ret) {
  739. mmc->has_init = 0;
  740. if (mmc_init(mmc))
  741. return CMD_RET_FAILURE;
  742. else
  743. return CMD_RET_SUCCESS;
  744. }
  745. return ret;
  746. }
  747. #ifdef CONFIG_CMD_BKOPS_ENABLE
  748. static int do_mmc_bkops_enable(cmd_tbl_t *cmdtp, int flag,
  749. int argc, char * const argv[])
  750. {
  751. int dev;
  752. struct mmc *mmc;
  753. if (argc != 2)
  754. return CMD_RET_USAGE;
  755. dev = simple_strtoul(argv[1], NULL, 10);
  756. mmc = init_mmc_device(dev, false);
  757. if (!mmc)
  758. return CMD_RET_FAILURE;
  759. if (IS_SD(mmc)) {
  760. puts("BKOPS_EN only exists on eMMC\n");
  761. return CMD_RET_FAILURE;
  762. }
  763. return mmc_set_bkops_enable(mmc);
  764. }
  765. #endif
  766. static int do_mmc_boot_wp(cmd_tbl_t *cmdtp, int flag,
  767. int argc, char * const argv[])
  768. {
  769. int err;
  770. struct mmc *mmc;
  771. mmc = init_mmc_device(curr_device, false);
  772. if (!mmc)
  773. return CMD_RET_FAILURE;
  774. if (IS_SD(mmc)) {
  775. printf("It is not an eMMC device\n");
  776. return CMD_RET_FAILURE;
  777. }
  778. err = mmc_boot_wp(mmc);
  779. if (err)
  780. return CMD_RET_FAILURE;
  781. printf("boot areas protected\n");
  782. return CMD_RET_SUCCESS;
  783. }
  784. static cmd_tbl_t cmd_mmc[] = {
  785. U_BOOT_CMD_MKENT(info, 1, 0, do_mmcinfo, "", ""),
  786. U_BOOT_CMD_MKENT(read, 4, 1, do_mmc_read, "", ""),
  787. U_BOOT_CMD_MKENT(wp, 1, 0, do_mmc_boot_wp, "", ""),
  788. #if CONFIG_IS_ENABLED(MMC_WRITE)
  789. U_BOOT_CMD_MKENT(write, 4, 0, do_mmc_write, "", ""),
  790. U_BOOT_CMD_MKENT(erase, 3, 0, do_mmc_erase, "", ""),
  791. #endif
  792. #if CONFIG_IS_ENABLED(CMD_MMC_SWRITE)
  793. U_BOOT_CMD_MKENT(swrite, 3, 0, do_mmc_sparse_write, "", ""),
  794. #endif
  795. U_BOOT_CMD_MKENT(rescan, 1, 1, do_mmc_rescan, "", ""),
  796. U_BOOT_CMD_MKENT(part, 1, 1, do_mmc_part, "", ""),
  797. U_BOOT_CMD_MKENT(dev, 3, 0, do_mmc_dev, "", ""),
  798. U_BOOT_CMD_MKENT(list, 1, 1, do_mmc_list, "", ""),
  799. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  800. U_BOOT_CMD_MKENT(hwpartition, 28, 0, do_mmc_hwpartition, "", ""),
  801. #endif
  802. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  803. U_BOOT_CMD_MKENT(bootbus, 5, 0, do_mmc_bootbus, "", ""),
  804. U_BOOT_CMD_MKENT(bootpart-resize, 4, 0, do_mmc_boot_resize, "", ""),
  805. U_BOOT_CMD_MKENT(partconf, 5, 0, do_mmc_partconf, "", ""),
  806. U_BOOT_CMD_MKENT(rst-function, 3, 0, do_mmc_rst_func, "", ""),
  807. #endif
  808. #if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
  809. U_BOOT_CMD_MKENT(rpmb, CONFIG_SYS_MAXARGS, 1, do_mmcrpmb, "", ""),
  810. #endif
  811. U_BOOT_CMD_MKENT(setdsr, 2, 0, do_mmc_setdsr, "", ""),
  812. #ifdef CONFIG_CMD_BKOPS_ENABLE
  813. U_BOOT_CMD_MKENT(bkops-enable, 2, 0, do_mmc_bkops_enable, "", ""),
  814. #endif
  815. };
  816. static int do_mmcops(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  817. {
  818. cmd_tbl_t *cp;
  819. cp = find_cmd_tbl(argv[1], cmd_mmc, ARRAY_SIZE(cmd_mmc));
  820. /* Drop the mmc command */
  821. argc--;
  822. argv++;
  823. if (cp == NULL || argc > cp->maxargs)
  824. return CMD_RET_USAGE;
  825. if (flag == CMD_FLAG_REPEAT && !cmd_is_repeatable(cp))
  826. return CMD_RET_SUCCESS;
  827. if (curr_device < 0) {
  828. if (get_mmc_num() > 0) {
  829. curr_device = 0;
  830. } else {
  831. puts("No MMC device available\n");
  832. return CMD_RET_FAILURE;
  833. }
  834. }
  835. return cp->cmd(cmdtp, flag, argc, argv);
  836. }
  837. U_BOOT_CMD(
  838. mmc, 29, 1, do_mmcops,
  839. "MMC sub system",
  840. "info - display info of the current MMC device\n"
  841. "mmc read addr blk# cnt\n"
  842. "mmc write addr blk# cnt\n"
  843. #if CONFIG_IS_ENABLED(CMD_MMC_SWRITE)
  844. "mmc swrite addr blk#\n"
  845. #endif
  846. "mmc erase blk# cnt\n"
  847. "mmc rescan\n"
  848. "mmc part - lists available partition on current mmc device\n"
  849. "mmc dev [dev] [part] - show or set current mmc device [partition]\n"
  850. "mmc list - lists available devices\n"
  851. "mmc wp - power on write protect booot partitions\n"
  852. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  853. "mmc hwpartition [args...] - does hardware partitioning\n"
  854. " arguments (sizes in 512-byte blocks):\n"
  855. " [user [enh start cnt] [wrrel {on|off}]] - sets user data area attributes\n"
  856. " [gp1|gp2|gp3|gp4 cnt [enh] [wrrel {on|off}]] - general purpose partition\n"
  857. " [check|set|complete] - mode, complete set partitioning completed\n"
  858. " WARNING: Partitioning is a write-once setting once it is set to complete.\n"
  859. " Power cycling is required to initialize partitions after set to complete.\n"
  860. #endif
  861. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  862. "mmc bootbus dev boot_bus_width reset_boot_bus_width boot_mode\n"
  863. " - Set the BOOT_BUS_WIDTH field of the specified device\n"
  864. "mmc bootpart-resize <dev> <boot part size MB> <RPMB part size MB>\n"
  865. " - Change sizes of boot and RPMB partitions of specified device\n"
  866. "mmc partconf dev [boot_ack boot_partition partition_access]\n"
  867. " - Show or change the bits of the PARTITION_CONFIG field of the specified device\n"
  868. "mmc rst-function dev value\n"
  869. " - Change the RST_n_FUNCTION field of the specified device\n"
  870. " WARNING: This is a write-once field and 0 / 1 / 2 are the only valid values.\n"
  871. #endif
  872. #if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
  873. "mmc rpmb read addr blk# cnt [address of auth-key] - block size is 256 bytes\n"
  874. "mmc rpmb write addr blk# cnt <address of auth-key> - block size is 256 bytes\n"
  875. "mmc rpmb key <address of auth-key> - program the RPMB authentication key.\n"
  876. "mmc rpmb counter - read the value of the write counter\n"
  877. #endif
  878. "mmc setdsr <value> - set DSR register value\n"
  879. #ifdef CONFIG_CMD_BKOPS_ENABLE
  880. "mmc bkops-enable <dev> - enable background operations handshake on device\n"
  881. " WARNING: This is a write-once setting.\n"
  882. #endif
  883. );
  884. /* Old command kept for compatibility. Same as 'mmc info' */
  885. U_BOOT_CMD(
  886. mmcinfo, 1, 0, do_mmcinfo,
  887. "display MMC info",
  888. "- display info of the current MMC device"
  889. );