mmc.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2003
  4. * Kyle Harris, kharris@nexus-tech.net
  5. */
  6. #include <common.h>
  7. #include <command.h>
  8. #include <console.h>
  9. #include <mmc.h>
  10. #include <sparse_format.h>
  11. #include <image-sparse.h>
  12. static int curr_device = -1;
  13. static void print_mmcinfo(struct mmc *mmc)
  14. {
  15. int i;
  16. printf("Device: %s\n", mmc->cfg->name);
  17. printf("Manufacturer ID: %x\n", mmc->cid[0] >> 24);
  18. printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xffff);
  19. printf("Name: %c%c%c%c%c \n", mmc->cid[0] & 0xff,
  20. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  21. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  22. printf("Bus Speed: %d\n", mmc->clock);
  23. #if CONFIG_IS_ENABLED(MMC_VERBOSE)
  24. printf("Mode : %s\n", mmc_mode_name(mmc->selected_mode));
  25. mmc_dump_capabilities("card capabilities", mmc->card_caps);
  26. mmc_dump_capabilities("host capabilities", mmc->host_caps);
  27. #endif
  28. printf("Rd Block Len: %d\n", mmc->read_bl_len);
  29. printf("%s version %d.%d", IS_SD(mmc) ? "SD" : "MMC",
  30. EXTRACT_SDMMC_MAJOR_VERSION(mmc->version),
  31. EXTRACT_SDMMC_MINOR_VERSION(mmc->version));
  32. if (EXTRACT_SDMMC_CHANGE_VERSION(mmc->version) != 0)
  33. printf(".%d", EXTRACT_SDMMC_CHANGE_VERSION(mmc->version));
  34. printf("\n");
  35. printf("High Capacity: %s\n", mmc->high_capacity ? "Yes" : "No");
  36. puts("Capacity: ");
  37. print_size(mmc->capacity, "\n");
  38. printf("Bus Width: %d-bit%s\n", mmc->bus_width,
  39. mmc->ddr_mode ? " DDR" : "");
  40. #if CONFIG_IS_ENABLED(MMC_WRITE)
  41. puts("Erase Group Size: ");
  42. print_size(((u64)mmc->erase_grp_size) << 9, "\n");
  43. #endif
  44. if (!IS_SD(mmc) && mmc->version >= MMC_VERSION_4_41) {
  45. bool has_enh = (mmc->part_support & ENHNCD_SUPPORT) != 0;
  46. bool usr_enh = has_enh && (mmc->part_attr & EXT_CSD_ENH_USR);
  47. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  48. puts("HC WP Group Size: ");
  49. print_size(((u64)mmc->hc_wp_grp_size) << 9, "\n");
  50. #endif
  51. puts("User Capacity: ");
  52. print_size(mmc->capacity_user, usr_enh ? " ENH" : "");
  53. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_USR)
  54. puts(" WRREL\n");
  55. else
  56. putc('\n');
  57. if (usr_enh) {
  58. puts("User Enhanced Start: ");
  59. print_size(mmc->enh_user_start, "\n");
  60. puts("User Enhanced Size: ");
  61. print_size(mmc->enh_user_size, "\n");
  62. }
  63. puts("Boot Capacity: ");
  64. print_size(mmc->capacity_boot, has_enh ? " ENH\n" : "\n");
  65. puts("RPMB Capacity: ");
  66. print_size(mmc->capacity_rpmb, has_enh ? " ENH\n" : "\n");
  67. for (i = 0; i < ARRAY_SIZE(mmc->capacity_gp); i++) {
  68. bool is_enh = has_enh &&
  69. (mmc->part_attr & EXT_CSD_ENH_GP(i));
  70. if (mmc->capacity_gp[i]) {
  71. printf("GP%i Capacity: ", i+1);
  72. print_size(mmc->capacity_gp[i],
  73. is_enh ? " ENH" : "");
  74. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_GP(i))
  75. puts(" WRREL\n");
  76. else
  77. putc('\n');
  78. }
  79. }
  80. }
  81. }
  82. static struct mmc *init_mmc_device(int dev, bool force_init)
  83. {
  84. struct mmc *mmc;
  85. mmc = find_mmc_device(dev);
  86. if (!mmc) {
  87. printf("no mmc device at slot %x\n", dev);
  88. return NULL;
  89. }
  90. if (force_init)
  91. mmc->has_init = 0;
  92. if (mmc_init(mmc))
  93. return NULL;
  94. return mmc;
  95. }
  96. static int do_mmcinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  97. {
  98. struct mmc *mmc;
  99. if (curr_device < 0) {
  100. if (get_mmc_num() > 0)
  101. curr_device = 0;
  102. else {
  103. puts("No MMC device available\n");
  104. return 1;
  105. }
  106. }
  107. mmc = init_mmc_device(curr_device, false);
  108. if (!mmc)
  109. return CMD_RET_FAILURE;
  110. print_mmcinfo(mmc);
  111. return CMD_RET_SUCCESS;
  112. }
  113. #if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
  114. static int confirm_key_prog(void)
  115. {
  116. puts("Warning: Programming authentication key can be done only once !\n"
  117. " Use this command only if you are sure of what you are doing,\n"
  118. "Really perform the key programming? <y/N> ");
  119. if (confirm_yesno())
  120. return 1;
  121. puts("Authentication key programming aborted\n");
  122. return 0;
  123. }
  124. static int do_mmcrpmb_key(cmd_tbl_t *cmdtp, int flag,
  125. int argc, char * const argv[])
  126. {
  127. void *key_addr;
  128. struct mmc *mmc = find_mmc_device(curr_device);
  129. if (argc != 2)
  130. return CMD_RET_USAGE;
  131. key_addr = (void *)simple_strtoul(argv[1], NULL, 16);
  132. if (!confirm_key_prog())
  133. return CMD_RET_FAILURE;
  134. if (mmc_rpmb_set_key(mmc, key_addr)) {
  135. printf("ERROR - Key already programmed ?\n");
  136. return CMD_RET_FAILURE;
  137. }
  138. return CMD_RET_SUCCESS;
  139. }
  140. static int do_mmcrpmb_read(cmd_tbl_t *cmdtp, int flag,
  141. int argc, char * const argv[])
  142. {
  143. u16 blk, cnt;
  144. void *addr;
  145. int n;
  146. void *key_addr = NULL;
  147. struct mmc *mmc = find_mmc_device(curr_device);
  148. if (argc < 4)
  149. return CMD_RET_USAGE;
  150. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  151. blk = simple_strtoul(argv[2], NULL, 16);
  152. cnt = simple_strtoul(argv[3], NULL, 16);
  153. if (argc == 5)
  154. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  155. printf("\nMMC RPMB read: dev # %d, block # %d, count %d ... ",
  156. curr_device, blk, cnt);
  157. n = mmc_rpmb_read(mmc, addr, blk, cnt, key_addr);
  158. printf("%d RPMB blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  159. if (n != cnt)
  160. return CMD_RET_FAILURE;
  161. return CMD_RET_SUCCESS;
  162. }
  163. static int do_mmcrpmb_write(cmd_tbl_t *cmdtp, int flag,
  164. int argc, char * const argv[])
  165. {
  166. u16 blk, cnt;
  167. void *addr;
  168. int n;
  169. void *key_addr;
  170. struct mmc *mmc = find_mmc_device(curr_device);
  171. if (argc != 5)
  172. return CMD_RET_USAGE;
  173. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  174. blk = simple_strtoul(argv[2], NULL, 16);
  175. cnt = simple_strtoul(argv[3], NULL, 16);
  176. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  177. printf("\nMMC RPMB write: dev # %d, block # %d, count %d ... ",
  178. curr_device, blk, cnt);
  179. n = mmc_rpmb_write(mmc, addr, blk, cnt, key_addr);
  180. printf("%d RPMB blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  181. if (n != cnt)
  182. return CMD_RET_FAILURE;
  183. return CMD_RET_SUCCESS;
  184. }
  185. static int do_mmcrpmb_counter(cmd_tbl_t *cmdtp, int flag,
  186. int argc, char * const argv[])
  187. {
  188. unsigned long counter;
  189. struct mmc *mmc = find_mmc_device(curr_device);
  190. if (mmc_rpmb_get_counter(mmc, &counter))
  191. return CMD_RET_FAILURE;
  192. printf("RPMB Write counter= %lx\n", counter);
  193. return CMD_RET_SUCCESS;
  194. }
  195. static cmd_tbl_t cmd_rpmb[] = {
  196. U_BOOT_CMD_MKENT(key, 2, 0, do_mmcrpmb_key, "", ""),
  197. U_BOOT_CMD_MKENT(read, 5, 1, do_mmcrpmb_read, "", ""),
  198. U_BOOT_CMD_MKENT(write, 5, 0, do_mmcrpmb_write, "", ""),
  199. U_BOOT_CMD_MKENT(counter, 1, 1, do_mmcrpmb_counter, "", ""),
  200. };
  201. static int do_mmcrpmb(cmd_tbl_t *cmdtp, int flag,
  202. int argc, char * const argv[])
  203. {
  204. cmd_tbl_t *cp;
  205. struct mmc *mmc;
  206. char original_part;
  207. int ret;
  208. cp = find_cmd_tbl(argv[1], cmd_rpmb, ARRAY_SIZE(cmd_rpmb));
  209. /* Drop the rpmb subcommand */
  210. argc--;
  211. argv++;
  212. if (cp == NULL || argc > cp->maxargs)
  213. return CMD_RET_USAGE;
  214. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  215. return CMD_RET_SUCCESS;
  216. mmc = init_mmc_device(curr_device, false);
  217. if (!mmc)
  218. return CMD_RET_FAILURE;
  219. if (!(mmc->version & MMC_VERSION_MMC)) {
  220. printf("It is not a EMMC device\n");
  221. return CMD_RET_FAILURE;
  222. }
  223. if (mmc->version < MMC_VERSION_4_41) {
  224. printf("RPMB not supported before version 4.41\n");
  225. return CMD_RET_FAILURE;
  226. }
  227. /* Switch to the RPMB partition */
  228. #ifndef CONFIG_BLK
  229. original_part = mmc->block_dev.hwpart;
  230. #else
  231. original_part = mmc_get_blk_desc(mmc)->hwpart;
  232. #endif
  233. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, MMC_PART_RPMB) !=
  234. 0)
  235. return CMD_RET_FAILURE;
  236. ret = cp->cmd(cmdtp, flag, argc, argv);
  237. /* Return to original partition */
  238. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, original_part) !=
  239. 0)
  240. return CMD_RET_FAILURE;
  241. return ret;
  242. }
  243. #endif
  244. static int do_mmc_read(cmd_tbl_t *cmdtp, int flag,
  245. int argc, char * const argv[])
  246. {
  247. struct mmc *mmc;
  248. u32 blk, cnt, n;
  249. void *addr;
  250. if (argc != 4)
  251. return CMD_RET_USAGE;
  252. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  253. blk = simple_strtoul(argv[2], NULL, 16);
  254. cnt = simple_strtoul(argv[3], NULL, 16);
  255. mmc = init_mmc_device(curr_device, false);
  256. if (!mmc)
  257. return CMD_RET_FAILURE;
  258. printf("\nMMC read: dev # %d, block # %d, count %d ... ",
  259. curr_device, blk, cnt);
  260. n = blk_dread(mmc_get_blk_desc(mmc), blk, cnt, addr);
  261. printf("%d blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  262. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  263. }
  264. #if CONFIG_IS_ENABLED(MMC_WRITE)
  265. #if defined(CONFIG_FASTBOOT_FLASH)
  266. static lbaint_t mmc_sparse_write(struct sparse_storage *info, lbaint_t blk,
  267. lbaint_t blkcnt, const void *buffer)
  268. {
  269. struct blk_desc *dev_desc = info->priv;
  270. return blk_dwrite(dev_desc, blk, blkcnt, buffer);
  271. }
  272. static lbaint_t mmc_sparse_reserve(struct sparse_storage *info,
  273. lbaint_t blk, lbaint_t blkcnt)
  274. {
  275. return blkcnt;
  276. }
  277. static int do_mmc_sparse_write(cmd_tbl_t *cmdtp, int flag,
  278. int argc, char * const argv[])
  279. {
  280. struct sparse_storage sparse;
  281. struct blk_desc *dev_desc;
  282. struct mmc *mmc;
  283. char dest[11];
  284. void *addr;
  285. u32 blk;
  286. if (argc != 3)
  287. return CMD_RET_USAGE;
  288. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  289. blk = simple_strtoul(argv[2], NULL, 16);
  290. if (!is_sparse_image(addr)) {
  291. printf("Not a sparse image\n");
  292. return CMD_RET_FAILURE;
  293. }
  294. mmc = init_mmc_device(curr_device, false);
  295. if (!mmc)
  296. return CMD_RET_FAILURE;
  297. printf("\nMMC Sparse write: dev # %d, block # %d ... ",
  298. curr_device, blk);
  299. if (mmc_getwp(mmc) == 1) {
  300. printf("Error: card is write protected!\n");
  301. return CMD_RET_FAILURE;
  302. }
  303. dev_desc = mmc_get_blk_desc(mmc);
  304. sparse.priv = dev_desc;
  305. sparse.blksz = 512;
  306. sparse.start = blk;
  307. sparse.size = dev_desc->lba - blk;
  308. sparse.write = mmc_sparse_write;
  309. sparse.reserve = mmc_sparse_reserve;
  310. sparse.mssg = NULL;
  311. sprintf(dest, "0x" LBAF, sparse.start * sparse.blksz);
  312. if (write_sparse_image(&sparse, dest, addr, NULL))
  313. return CMD_RET_FAILURE;
  314. else
  315. return CMD_RET_SUCCESS;
  316. }
  317. #endif
  318. static int do_mmc_write(cmd_tbl_t *cmdtp, int flag,
  319. int argc, char * const argv[])
  320. {
  321. struct mmc *mmc;
  322. u32 blk, cnt, n;
  323. void *addr;
  324. if (argc != 4)
  325. return CMD_RET_USAGE;
  326. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  327. blk = simple_strtoul(argv[2], NULL, 16);
  328. cnt = simple_strtoul(argv[3], NULL, 16);
  329. mmc = init_mmc_device(curr_device, false);
  330. if (!mmc)
  331. return CMD_RET_FAILURE;
  332. printf("\nMMC write: dev # %d, block # %d, count %d ... ",
  333. curr_device, blk, cnt);
  334. if (mmc_getwp(mmc) == 1) {
  335. printf("Error: card is write protected!\n");
  336. return CMD_RET_FAILURE;
  337. }
  338. n = blk_dwrite(mmc_get_blk_desc(mmc), blk, cnt, addr);
  339. printf("%d blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  340. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  341. }
  342. static int do_mmc_erase(cmd_tbl_t *cmdtp, int flag,
  343. int argc, char * const argv[])
  344. {
  345. struct mmc *mmc;
  346. u32 blk, cnt, n;
  347. if (argc != 3)
  348. return CMD_RET_USAGE;
  349. blk = simple_strtoul(argv[1], NULL, 16);
  350. cnt = simple_strtoul(argv[2], NULL, 16);
  351. mmc = init_mmc_device(curr_device, false);
  352. if (!mmc)
  353. return CMD_RET_FAILURE;
  354. printf("\nMMC erase: dev # %d, block # %d, count %d ... ",
  355. curr_device, blk, cnt);
  356. if (mmc_getwp(mmc) == 1) {
  357. printf("Error: card is write protected!\n");
  358. return CMD_RET_FAILURE;
  359. }
  360. n = blk_derase(mmc_get_blk_desc(mmc), blk, cnt);
  361. printf("%d blocks erased: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  362. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  363. }
  364. #endif
  365. static int do_mmc_rescan(cmd_tbl_t *cmdtp, int flag,
  366. int argc, char * const argv[])
  367. {
  368. struct mmc *mmc;
  369. mmc = init_mmc_device(curr_device, true);
  370. if (!mmc)
  371. return CMD_RET_FAILURE;
  372. return CMD_RET_SUCCESS;
  373. }
  374. static int do_mmc_part(cmd_tbl_t *cmdtp, int flag,
  375. int argc, char * const argv[])
  376. {
  377. struct blk_desc *mmc_dev;
  378. struct mmc *mmc;
  379. mmc = init_mmc_device(curr_device, false);
  380. if (!mmc)
  381. return CMD_RET_FAILURE;
  382. mmc_dev = blk_get_devnum_by_type(IF_TYPE_MMC, curr_device);
  383. if (mmc_dev != NULL && mmc_dev->type != DEV_TYPE_UNKNOWN) {
  384. part_print(mmc_dev);
  385. return CMD_RET_SUCCESS;
  386. }
  387. puts("get mmc type error!\n");
  388. return CMD_RET_FAILURE;
  389. }
  390. static int do_mmc_dev(cmd_tbl_t *cmdtp, int flag,
  391. int argc, char * const argv[])
  392. {
  393. int dev, part = 0, ret;
  394. struct mmc *mmc;
  395. if (argc == 1) {
  396. dev = curr_device;
  397. } else if (argc == 2) {
  398. dev = simple_strtoul(argv[1], NULL, 10);
  399. } else if (argc == 3) {
  400. dev = (int)simple_strtoul(argv[1], NULL, 10);
  401. part = (int)simple_strtoul(argv[2], NULL, 10);
  402. if (part > PART_ACCESS_MASK) {
  403. printf("#part_num shouldn't be larger than %d\n",
  404. PART_ACCESS_MASK);
  405. return CMD_RET_FAILURE;
  406. }
  407. } else {
  408. return CMD_RET_USAGE;
  409. }
  410. mmc = init_mmc_device(dev, true);
  411. if (!mmc)
  412. return CMD_RET_FAILURE;
  413. ret = blk_select_hwpart_devnum(IF_TYPE_MMC, dev, part);
  414. printf("switch to partitions #%d, %s\n",
  415. part, (!ret) ? "OK" : "ERROR");
  416. if (ret)
  417. return 1;
  418. curr_device = dev;
  419. if (mmc->part_config == MMCPART_NOAVAILABLE)
  420. printf("mmc%d is current device\n", curr_device);
  421. else
  422. printf("mmc%d(part %d) is current device\n",
  423. curr_device, mmc_get_blk_desc(mmc)->hwpart);
  424. return CMD_RET_SUCCESS;
  425. }
  426. static int do_mmc_list(cmd_tbl_t *cmdtp, int flag,
  427. int argc, char * const argv[])
  428. {
  429. print_mmc_devices('\n');
  430. return CMD_RET_SUCCESS;
  431. }
  432. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  433. static int parse_hwpart_user(struct mmc_hwpart_conf *pconf,
  434. int argc, char * const argv[])
  435. {
  436. int i = 0;
  437. memset(&pconf->user, 0, sizeof(pconf->user));
  438. while (i < argc) {
  439. if (!strcmp(argv[i], "enh")) {
  440. if (i + 2 >= argc)
  441. return -1;
  442. pconf->user.enh_start =
  443. simple_strtoul(argv[i+1], NULL, 10);
  444. pconf->user.enh_size =
  445. simple_strtoul(argv[i+2], NULL, 10);
  446. i += 3;
  447. } else if (!strcmp(argv[i], "wrrel")) {
  448. if (i + 1 >= argc)
  449. return -1;
  450. pconf->user.wr_rel_change = 1;
  451. if (!strcmp(argv[i+1], "on"))
  452. pconf->user.wr_rel_set = 1;
  453. else if (!strcmp(argv[i+1], "off"))
  454. pconf->user.wr_rel_set = 0;
  455. else
  456. return -1;
  457. i += 2;
  458. } else {
  459. break;
  460. }
  461. }
  462. return i;
  463. }
  464. static int parse_hwpart_gp(struct mmc_hwpart_conf *pconf, int pidx,
  465. int argc, char * const argv[])
  466. {
  467. int i;
  468. memset(&pconf->gp_part[pidx], 0, sizeof(pconf->gp_part[pidx]));
  469. if (1 >= argc)
  470. return -1;
  471. pconf->gp_part[pidx].size = simple_strtoul(argv[0], NULL, 10);
  472. i = 1;
  473. while (i < argc) {
  474. if (!strcmp(argv[i], "enh")) {
  475. pconf->gp_part[pidx].enhanced = 1;
  476. i += 1;
  477. } else if (!strcmp(argv[i], "wrrel")) {
  478. if (i + 1 >= argc)
  479. return -1;
  480. pconf->gp_part[pidx].wr_rel_change = 1;
  481. if (!strcmp(argv[i+1], "on"))
  482. pconf->gp_part[pidx].wr_rel_set = 1;
  483. else if (!strcmp(argv[i+1], "off"))
  484. pconf->gp_part[pidx].wr_rel_set = 0;
  485. else
  486. return -1;
  487. i += 2;
  488. } else {
  489. break;
  490. }
  491. }
  492. return i;
  493. }
  494. static int do_mmc_hwpartition(cmd_tbl_t *cmdtp, int flag,
  495. int argc, char * const argv[])
  496. {
  497. struct mmc *mmc;
  498. struct mmc_hwpart_conf pconf = { };
  499. enum mmc_hwpart_conf_mode mode = MMC_HWPART_CONF_CHECK;
  500. int i, r, pidx;
  501. mmc = init_mmc_device(curr_device, false);
  502. if (!mmc)
  503. return CMD_RET_FAILURE;
  504. if (argc < 1)
  505. return CMD_RET_USAGE;
  506. i = 1;
  507. while (i < argc) {
  508. if (!strcmp(argv[i], "user")) {
  509. i++;
  510. r = parse_hwpart_user(&pconf, argc-i, &argv[i]);
  511. if (r < 0)
  512. return CMD_RET_USAGE;
  513. i += r;
  514. } else if (!strncmp(argv[i], "gp", 2) &&
  515. strlen(argv[i]) == 3 &&
  516. argv[i][2] >= '1' && argv[i][2] <= '4') {
  517. pidx = argv[i][2] - '1';
  518. i++;
  519. r = parse_hwpart_gp(&pconf, pidx, argc-i, &argv[i]);
  520. if (r < 0)
  521. return CMD_RET_USAGE;
  522. i += r;
  523. } else if (!strcmp(argv[i], "check")) {
  524. mode = MMC_HWPART_CONF_CHECK;
  525. i++;
  526. } else if (!strcmp(argv[i], "set")) {
  527. mode = MMC_HWPART_CONF_SET;
  528. i++;
  529. } else if (!strcmp(argv[i], "complete")) {
  530. mode = MMC_HWPART_CONF_COMPLETE;
  531. i++;
  532. } else {
  533. return CMD_RET_USAGE;
  534. }
  535. }
  536. puts("Partition configuration:\n");
  537. if (pconf.user.enh_size) {
  538. puts("\tUser Enhanced Start: ");
  539. print_size(((u64)pconf.user.enh_start) << 9, "\n");
  540. puts("\tUser Enhanced Size: ");
  541. print_size(((u64)pconf.user.enh_size) << 9, "\n");
  542. } else {
  543. puts("\tNo enhanced user data area\n");
  544. }
  545. if (pconf.user.wr_rel_change)
  546. printf("\tUser partition write reliability: %s\n",
  547. pconf.user.wr_rel_set ? "on" : "off");
  548. for (pidx = 0; pidx < 4; pidx++) {
  549. if (pconf.gp_part[pidx].size) {
  550. printf("\tGP%i Capacity: ", pidx+1);
  551. print_size(((u64)pconf.gp_part[pidx].size) << 9,
  552. pconf.gp_part[pidx].enhanced ?
  553. " ENH\n" : "\n");
  554. } else {
  555. printf("\tNo GP%i partition\n", pidx+1);
  556. }
  557. if (pconf.gp_part[pidx].wr_rel_change)
  558. printf("\tGP%i write reliability: %s\n", pidx+1,
  559. pconf.gp_part[pidx].wr_rel_set ? "on" : "off");
  560. }
  561. if (!mmc_hwpart_config(mmc, &pconf, mode)) {
  562. if (mode == MMC_HWPART_CONF_COMPLETE)
  563. puts("Partitioning successful, "
  564. "power-cycle to make effective\n");
  565. return CMD_RET_SUCCESS;
  566. } else {
  567. puts("Failed!\n");
  568. return CMD_RET_FAILURE;
  569. }
  570. }
  571. #endif
  572. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  573. static int do_mmc_bootbus(cmd_tbl_t *cmdtp, int flag,
  574. int argc, char * const argv[])
  575. {
  576. int dev;
  577. struct mmc *mmc;
  578. u8 width, reset, mode;
  579. if (argc != 5)
  580. return CMD_RET_USAGE;
  581. dev = simple_strtoul(argv[1], NULL, 10);
  582. width = simple_strtoul(argv[2], NULL, 10);
  583. reset = simple_strtoul(argv[3], NULL, 10);
  584. mode = simple_strtoul(argv[4], NULL, 10);
  585. mmc = init_mmc_device(dev, false);
  586. if (!mmc)
  587. return CMD_RET_FAILURE;
  588. if (IS_SD(mmc)) {
  589. puts("BOOT_BUS_WIDTH only exists on eMMC\n");
  590. return CMD_RET_FAILURE;
  591. }
  592. /* acknowledge to be sent during boot operation */
  593. return mmc_set_boot_bus_width(mmc, width, reset, mode);
  594. }
  595. static int do_mmc_boot_resize(cmd_tbl_t *cmdtp, int flag,
  596. int argc, char * const argv[])
  597. {
  598. int dev;
  599. struct mmc *mmc;
  600. u32 bootsize, rpmbsize;
  601. if (argc != 4)
  602. return CMD_RET_USAGE;
  603. dev = simple_strtoul(argv[1], NULL, 10);
  604. bootsize = simple_strtoul(argv[2], NULL, 10);
  605. rpmbsize = simple_strtoul(argv[3], NULL, 10);
  606. mmc = init_mmc_device(dev, false);
  607. if (!mmc)
  608. return CMD_RET_FAILURE;
  609. if (IS_SD(mmc)) {
  610. printf("It is not a EMMC device\n");
  611. return CMD_RET_FAILURE;
  612. }
  613. if (mmc_boot_partition_size_change(mmc, bootsize, rpmbsize)) {
  614. printf("EMMC boot partition Size change Failed.\n");
  615. return CMD_RET_FAILURE;
  616. }
  617. printf("EMMC boot partition Size %d MB\n", bootsize);
  618. printf("EMMC RPMB partition Size %d MB\n", rpmbsize);
  619. return CMD_RET_SUCCESS;
  620. }
  621. static int mmc_partconf_print(struct mmc *mmc)
  622. {
  623. u8 ack, access, part;
  624. if (mmc->part_config == MMCPART_NOAVAILABLE) {
  625. printf("No part_config info for ver. 0x%x\n", mmc->version);
  626. return CMD_RET_FAILURE;
  627. }
  628. access = EXT_CSD_EXTRACT_PARTITION_ACCESS(mmc->part_config);
  629. ack = EXT_CSD_EXTRACT_BOOT_ACK(mmc->part_config);
  630. part = EXT_CSD_EXTRACT_BOOT_PART(mmc->part_config);
  631. printf("EXT_CSD[179], PARTITION_CONFIG:\n"
  632. "BOOT_ACK: 0x%x\n"
  633. "BOOT_PARTITION_ENABLE: 0x%x\n"
  634. "PARTITION_ACCESS: 0x%x\n", ack, part, access);
  635. return CMD_RET_SUCCESS;
  636. }
  637. static int do_mmc_partconf(cmd_tbl_t *cmdtp, int flag,
  638. int argc, char * const argv[])
  639. {
  640. int dev;
  641. struct mmc *mmc;
  642. u8 ack, part_num, access;
  643. if (argc != 2 && argc != 5)
  644. return CMD_RET_USAGE;
  645. dev = simple_strtoul(argv[1], NULL, 10);
  646. mmc = init_mmc_device(dev, false);
  647. if (!mmc)
  648. return CMD_RET_FAILURE;
  649. if (IS_SD(mmc)) {
  650. puts("PARTITION_CONFIG only exists on eMMC\n");
  651. return CMD_RET_FAILURE;
  652. }
  653. if (argc == 2)
  654. return mmc_partconf_print(mmc);
  655. ack = simple_strtoul(argv[2], NULL, 10);
  656. part_num = simple_strtoul(argv[3], NULL, 10);
  657. access = simple_strtoul(argv[4], NULL, 10);
  658. /* acknowledge to be sent during boot operation */
  659. return mmc_set_part_conf(mmc, ack, part_num, access);
  660. }
  661. static int do_mmc_rst_func(cmd_tbl_t *cmdtp, int flag,
  662. int argc, char * const argv[])
  663. {
  664. int dev;
  665. struct mmc *mmc;
  666. u8 enable;
  667. /*
  668. * Set the RST_n_ENABLE bit of RST_n_FUNCTION
  669. * The only valid values are 0x0, 0x1 and 0x2 and writing
  670. * a value of 0x1 or 0x2 sets the value permanently.
  671. */
  672. if (argc != 3)
  673. return CMD_RET_USAGE;
  674. dev = simple_strtoul(argv[1], NULL, 10);
  675. enable = simple_strtoul(argv[2], NULL, 10);
  676. if (enable > 2) {
  677. puts("Invalid RST_n_ENABLE value\n");
  678. return CMD_RET_USAGE;
  679. }
  680. mmc = init_mmc_device(dev, false);
  681. if (!mmc)
  682. return CMD_RET_FAILURE;
  683. if (IS_SD(mmc)) {
  684. puts("RST_n_FUNCTION only exists on eMMC\n");
  685. return CMD_RET_FAILURE;
  686. }
  687. return mmc_set_rst_n_function(mmc, enable);
  688. }
  689. #endif
  690. static int do_mmc_setdsr(cmd_tbl_t *cmdtp, int flag,
  691. int argc, char * const argv[])
  692. {
  693. struct mmc *mmc;
  694. u32 val;
  695. int ret;
  696. if (argc != 2)
  697. return CMD_RET_USAGE;
  698. val = simple_strtoul(argv[1], NULL, 16);
  699. mmc = find_mmc_device(curr_device);
  700. if (!mmc) {
  701. printf("no mmc device at slot %x\n", curr_device);
  702. return CMD_RET_FAILURE;
  703. }
  704. ret = mmc_set_dsr(mmc, val);
  705. printf("set dsr %s\n", (!ret) ? "OK, force rescan" : "ERROR");
  706. if (!ret) {
  707. mmc->has_init = 0;
  708. if (mmc_init(mmc))
  709. return CMD_RET_FAILURE;
  710. else
  711. return CMD_RET_SUCCESS;
  712. }
  713. return ret;
  714. }
  715. #ifdef CONFIG_CMD_BKOPS_ENABLE
  716. static int do_mmc_bkops_enable(cmd_tbl_t *cmdtp, int flag,
  717. int argc, char * const argv[])
  718. {
  719. int dev;
  720. struct mmc *mmc;
  721. if (argc != 2)
  722. return CMD_RET_USAGE;
  723. dev = simple_strtoul(argv[1], NULL, 10);
  724. mmc = init_mmc_device(dev, false);
  725. if (!mmc)
  726. return CMD_RET_FAILURE;
  727. if (IS_SD(mmc)) {
  728. puts("BKOPS_EN only exists on eMMC\n");
  729. return CMD_RET_FAILURE;
  730. }
  731. return mmc_set_bkops_enable(mmc);
  732. }
  733. #endif
  734. static cmd_tbl_t cmd_mmc[] = {
  735. U_BOOT_CMD_MKENT(info, 1, 0, do_mmcinfo, "", ""),
  736. U_BOOT_CMD_MKENT(read, 4, 1, do_mmc_read, "", ""),
  737. #if CONFIG_IS_ENABLED(MMC_WRITE)
  738. U_BOOT_CMD_MKENT(write, 4, 0, do_mmc_write, "", ""),
  739. #if defined(CONFIG_FASTBOOT_FLASH)
  740. U_BOOT_CMD_MKENT(swrite, 3, 0, do_mmc_sparse_write, "", ""),
  741. #endif
  742. U_BOOT_CMD_MKENT(erase, 3, 0, do_mmc_erase, "", ""),
  743. #endif
  744. U_BOOT_CMD_MKENT(rescan, 1, 1, do_mmc_rescan, "", ""),
  745. U_BOOT_CMD_MKENT(part, 1, 1, do_mmc_part, "", ""),
  746. U_BOOT_CMD_MKENT(dev, 3, 0, do_mmc_dev, "", ""),
  747. U_BOOT_CMD_MKENT(list, 1, 1, do_mmc_list, "", ""),
  748. #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING)
  749. U_BOOT_CMD_MKENT(hwpartition, 28, 0, do_mmc_hwpartition, "", ""),
  750. #endif
  751. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  752. U_BOOT_CMD_MKENT(bootbus, 5, 0, do_mmc_bootbus, "", ""),
  753. U_BOOT_CMD_MKENT(bootpart-resize, 4, 0, do_mmc_boot_resize, "", ""),
  754. U_BOOT_CMD_MKENT(partconf, 5, 0, do_mmc_partconf, "", ""),
  755. U_BOOT_CMD_MKENT(rst-function, 3, 0, do_mmc_rst_func, "", ""),
  756. #endif
  757. #if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
  758. U_BOOT_CMD_MKENT(rpmb, CONFIG_SYS_MAXARGS, 1, do_mmcrpmb, "", ""),
  759. #endif
  760. U_BOOT_CMD_MKENT(setdsr, 2, 0, do_mmc_setdsr, "", ""),
  761. #ifdef CONFIG_CMD_BKOPS_ENABLE
  762. U_BOOT_CMD_MKENT(bkops-enable, 2, 0, do_mmc_bkops_enable, "", ""),
  763. #endif
  764. };
  765. static int do_mmcops(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  766. {
  767. cmd_tbl_t *cp;
  768. cp = find_cmd_tbl(argv[1], cmd_mmc, ARRAY_SIZE(cmd_mmc));
  769. /* Drop the mmc command */
  770. argc--;
  771. argv++;
  772. if (cp == NULL || argc > cp->maxargs)
  773. return CMD_RET_USAGE;
  774. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  775. return CMD_RET_SUCCESS;
  776. if (curr_device < 0) {
  777. if (get_mmc_num() > 0) {
  778. curr_device = 0;
  779. } else {
  780. puts("No MMC device available\n");
  781. return CMD_RET_FAILURE;
  782. }
  783. }
  784. return cp->cmd(cmdtp, flag, argc, argv);
  785. }
  786. U_BOOT_CMD(
  787. mmc, 29, 1, do_mmcops,
  788. "MMC sub system",
  789. "info - display info of the current MMC device\n"
  790. "mmc read addr blk# cnt\n"
  791. "mmc write addr blk# cnt\n"
  792. #if defined(CONFIG_FASTBOOT_FLASH)
  793. "mmc swrite addr blk#\n"
  794. #endif
  795. "mmc erase blk# cnt\n"
  796. "mmc rescan\n"
  797. "mmc part - lists available partition on current mmc device\n"
  798. "mmc dev [dev] [part] - show or set current mmc device [partition]\n"
  799. "mmc list - lists available devices\n"
  800. "mmc hwpartition [args...] - does hardware partitioning\n"
  801. " arguments (sizes in 512-byte blocks):\n"
  802. " [user [enh start cnt] [wrrel {on|off}]] - sets user data area attributes\n"
  803. " [gp1|gp2|gp3|gp4 cnt [enh] [wrrel {on|off}]] - general purpose partition\n"
  804. " [check|set|complete] - mode, complete set partitioning completed\n"
  805. " WARNING: Partitioning is a write-once setting once it is set to complete.\n"
  806. " Power cycling is required to initialize partitions after set to complete.\n"
  807. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  808. "mmc bootbus dev boot_bus_width reset_boot_bus_width boot_mode\n"
  809. " - Set the BOOT_BUS_WIDTH field of the specified device\n"
  810. "mmc bootpart-resize <dev> <boot part size MB> <RPMB part size MB>\n"
  811. " - Change sizes of boot and RPMB partitions of specified device\n"
  812. "mmc partconf dev [boot_ack boot_partition partition_access]\n"
  813. " - Show or change the bits of the PARTITION_CONFIG field of the specified device\n"
  814. "mmc rst-function dev value\n"
  815. " - Change the RST_n_FUNCTION field of the specified device\n"
  816. " WARNING: This is a write-once field and 0 / 1 / 2 are the only valid values.\n"
  817. #endif
  818. #if CONFIG_IS_ENABLED(CMD_MMC_RPMB)
  819. "mmc rpmb read addr blk# cnt [address of auth-key] - block size is 256 bytes\n"
  820. "mmc rpmb write addr blk# cnt <address of auth-key> - block size is 256 bytes\n"
  821. "mmc rpmb key <address of auth-key> - program the RPMB authentication key.\n"
  822. "mmc rpmb counter - read the value of the write counter\n"
  823. #endif
  824. "mmc setdsr <value> - set DSR register value\n"
  825. #ifdef CONFIG_CMD_BKOPS_ENABLE
  826. "mmc bkops-enable <dev> - enable background operations handshake on device\n"
  827. " WARNING: This is a write-once setting.\n"
  828. #endif
  829. );
  830. /* Old command kept for compatibility. Same as 'mmc info' */
  831. U_BOOT_CMD(
  832. mmcinfo, 1, 0, do_mmcinfo,
  833. "display MMC info",
  834. "- display info of the current MMC device"
  835. );