lmb.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * SPDX-License-Identifier: GPL-2.0+
  8. */
  9. #include <common.h>
  10. #include <lmb.h>
  11. #define LMB_ALLOC_ANYWHERE 0
  12. void lmb_dump_all(struct lmb *lmb)
  13. {
  14. #ifdef DEBUG
  15. unsigned long i;
  16. debug("lmb_dump_all:\n");
  17. debug(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
  18. debug(" memory.size = 0x%llx\n",
  19. (unsigned long long)lmb->memory.size);
  20. for (i=0; i < lmb->memory.cnt ;i++) {
  21. debug(" memory.reg[0x%lx].base = 0x%llx\n", i,
  22. (long long unsigned)lmb->memory.region[i].base);
  23. debug(" .size = 0x%llx\n",
  24. (long long unsigned)lmb->memory.region[i].size);
  25. }
  26. debug("\n reserved.cnt = 0x%lx\n",
  27. lmb->reserved.cnt);
  28. debug(" reserved.size = 0x%llx\n",
  29. (long long unsigned)lmb->reserved.size);
  30. for (i=0; i < lmb->reserved.cnt ;i++) {
  31. debug(" reserved.reg[0x%lx].base = 0x%llx\n", i,
  32. (long long unsigned)lmb->reserved.region[i].base);
  33. debug(" .size = 0x%llx\n",
  34. (long long unsigned)lmb->reserved.region[i].size);
  35. }
  36. #endif /* DEBUG */
  37. }
  38. static long lmb_addrs_overlap(phys_addr_t base1,
  39. phys_size_t size1, phys_addr_t base2, phys_size_t size2)
  40. {
  41. return ((base1 < (base2+size2)) && (base2 < (base1+size1)));
  42. }
  43. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  44. phys_addr_t base2, phys_size_t size2)
  45. {
  46. if (base2 == base1 + size1)
  47. return 1;
  48. else if (base1 == base2 + size2)
  49. return -1;
  50. return 0;
  51. }
  52. static long lmb_regions_adjacent(struct lmb_region *rgn,
  53. unsigned long r1, unsigned long r2)
  54. {
  55. phys_addr_t base1 = rgn->region[r1].base;
  56. phys_size_t size1 = rgn->region[r1].size;
  57. phys_addr_t base2 = rgn->region[r2].base;
  58. phys_size_t size2 = rgn->region[r2].size;
  59. return lmb_addrs_adjacent(base1, size1, base2, size2);
  60. }
  61. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  62. {
  63. unsigned long i;
  64. for (i = r; i < rgn->cnt - 1; i++) {
  65. rgn->region[i].base = rgn->region[i + 1].base;
  66. rgn->region[i].size = rgn->region[i + 1].size;
  67. }
  68. rgn->cnt--;
  69. }
  70. /* Assumption: base addr of region 1 < base addr of region 2 */
  71. static void lmb_coalesce_regions(struct lmb_region *rgn,
  72. unsigned long r1, unsigned long r2)
  73. {
  74. rgn->region[r1].size += rgn->region[r2].size;
  75. lmb_remove_region(rgn, r2);
  76. }
  77. void lmb_init(struct lmb *lmb)
  78. {
  79. /* Create a dummy zero size LMB which will get coalesced away later.
  80. * This simplifies the lmb_add() code below...
  81. */
  82. lmb->memory.region[0].base = 0;
  83. lmb->memory.region[0].size = 0;
  84. lmb->memory.cnt = 1;
  85. lmb->memory.size = 0;
  86. /* Ditto. */
  87. lmb->reserved.region[0].base = 0;
  88. lmb->reserved.region[0].size = 0;
  89. lmb->reserved.cnt = 1;
  90. lmb->reserved.size = 0;
  91. }
  92. /* This routine called with relocation disabled. */
  93. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size)
  94. {
  95. unsigned long coalesced = 0;
  96. long adjacent, i;
  97. if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
  98. rgn->region[0].base = base;
  99. rgn->region[0].size = size;
  100. return 0;
  101. }
  102. /* First try and coalesce this LMB with another. */
  103. for (i=0; i < rgn->cnt; i++) {
  104. phys_addr_t rgnbase = rgn->region[i].base;
  105. phys_size_t rgnsize = rgn->region[i].size;
  106. if ((rgnbase == base) && (rgnsize == size))
  107. /* Already have this region, so we're done */
  108. return 0;
  109. adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize);
  110. if ( adjacent > 0 ) {
  111. rgn->region[i].base -= size;
  112. rgn->region[i].size += size;
  113. coalesced++;
  114. break;
  115. }
  116. else if ( adjacent < 0 ) {
  117. rgn->region[i].size += size;
  118. coalesced++;
  119. break;
  120. }
  121. }
  122. if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) {
  123. lmb_coalesce_regions(rgn, i, i+1);
  124. coalesced++;
  125. }
  126. if (coalesced)
  127. return coalesced;
  128. if (rgn->cnt >= MAX_LMB_REGIONS)
  129. return -1;
  130. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  131. for (i = rgn->cnt-1; i >= 0; i--) {
  132. if (base < rgn->region[i].base) {
  133. rgn->region[i+1].base = rgn->region[i].base;
  134. rgn->region[i+1].size = rgn->region[i].size;
  135. } else {
  136. rgn->region[i+1].base = base;
  137. rgn->region[i+1].size = size;
  138. break;
  139. }
  140. }
  141. if (base < rgn->region[0].base) {
  142. rgn->region[0].base = base;
  143. rgn->region[0].size = size;
  144. }
  145. rgn->cnt++;
  146. return 0;
  147. }
  148. /* This routine may be called with relocation disabled. */
  149. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  150. {
  151. struct lmb_region *_rgn = &(lmb->memory);
  152. return lmb_add_region(_rgn, base, size);
  153. }
  154. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  155. {
  156. struct lmb_region *rgn = &(lmb->reserved);
  157. phys_addr_t rgnbegin, rgnend;
  158. phys_addr_t end = base + size;
  159. int i;
  160. rgnbegin = rgnend = 0; /* supress gcc warnings */
  161. /* Find the region where (base, size) belongs to */
  162. for (i=0; i < rgn->cnt; i++) {
  163. rgnbegin = rgn->region[i].base;
  164. rgnend = rgnbegin + rgn->region[i].size;
  165. if ((rgnbegin <= base) && (end <= rgnend))
  166. break;
  167. }
  168. /* Didn't find the region */
  169. if (i == rgn->cnt)
  170. return -1;
  171. /* Check to see if we are removing entire region */
  172. if ((rgnbegin == base) && (rgnend == end)) {
  173. lmb_remove_region(rgn, i);
  174. return 0;
  175. }
  176. /* Check to see if region is matching at the front */
  177. if (rgnbegin == base) {
  178. rgn->region[i].base = end;
  179. rgn->region[i].size -= size;
  180. return 0;
  181. }
  182. /* Check to see if the region is matching at the end */
  183. if (rgnend == end) {
  184. rgn->region[i].size -= size;
  185. return 0;
  186. }
  187. /*
  188. * We need to split the entry - adjust the current one to the
  189. * beginging of the hole and add the region after hole.
  190. */
  191. rgn->region[i].size = base - rgn->region[i].base;
  192. return lmb_add_region(rgn, end, rgnend - end);
  193. }
  194. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  195. {
  196. struct lmb_region *_rgn = &(lmb->reserved);
  197. return lmb_add_region(_rgn, base, size);
  198. }
  199. long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  200. phys_size_t size)
  201. {
  202. unsigned long i;
  203. for (i=0; i < rgn->cnt; i++) {
  204. phys_addr_t rgnbase = rgn->region[i].base;
  205. phys_size_t rgnsize = rgn->region[i].size;
  206. if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) {
  207. break;
  208. }
  209. }
  210. return (i < rgn->cnt) ? i : -1;
  211. }
  212. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  213. {
  214. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  215. }
  216. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  217. {
  218. phys_addr_t alloc;
  219. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  220. if (alloc == 0)
  221. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  222. (ulong)size, (ulong)max_addr);
  223. return alloc;
  224. }
  225. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  226. {
  227. return addr & ~(size - 1);
  228. }
  229. static phys_addr_t lmb_align_up(phys_addr_t addr, ulong size)
  230. {
  231. return (addr + (size - 1)) & ~(size - 1);
  232. }
  233. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  234. {
  235. long i, j;
  236. phys_addr_t base = 0;
  237. phys_addr_t res_base;
  238. for (i = lmb->memory.cnt-1; i >= 0; i--) {
  239. phys_addr_t lmbbase = lmb->memory.region[i].base;
  240. phys_size_t lmbsize = lmb->memory.region[i].size;
  241. if (lmbsize < size)
  242. continue;
  243. if (max_addr == LMB_ALLOC_ANYWHERE)
  244. base = lmb_align_down(lmbbase + lmbsize - size, align);
  245. else if (lmbbase < max_addr) {
  246. base = min(lmbbase + lmbsize, max_addr);
  247. base = lmb_align_down(base - size, align);
  248. } else
  249. continue;
  250. while (base && lmbbase <= base) {
  251. j = lmb_overlaps_region(&lmb->reserved, base, size);
  252. if (j < 0) {
  253. /* This area isn't reserved, take it */
  254. if (lmb_add_region(&lmb->reserved, base,
  255. lmb_align_up(size,
  256. align)) < 0)
  257. return 0;
  258. return base;
  259. }
  260. res_base = lmb->reserved.region[j].base;
  261. if (res_base < size)
  262. break;
  263. base = lmb_align_down(res_base - size, align);
  264. }
  265. }
  266. return 0;
  267. }
  268. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  269. {
  270. int i;
  271. for (i = 0; i < lmb->reserved.cnt; i++) {
  272. phys_addr_t upper = lmb->reserved.region[i].base +
  273. lmb->reserved.region[i].size - 1;
  274. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  275. return 1;
  276. }
  277. return 0;
  278. }
  279. void __board_lmb_reserve(struct lmb *lmb)
  280. {
  281. /* please define platform specific board_lmb_reserve() */
  282. }
  283. void board_lmb_reserve(struct lmb *lmb) __attribute__((weak, alias("__board_lmb_reserve")));
  284. void __arch_lmb_reserve(struct lmb *lmb)
  285. {
  286. /* please define platform specific arch_lmb_reserve() */
  287. }
  288. void arch_lmb_reserve(struct lmb *lmb) __attribute__((weak, alias("__arch_lmb_reserve")));