sha512.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * FIPS-180-2 compliant SHA-512 and SHA-384 implementation
  4. *
  5. * SHA-512 code by Jean-Luc Cooke <jlcooke@certainkey.com>
  6. *
  7. * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
  8. * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
  9. * Copyright (c) 2003 Kyle McMartin <kyle@debian.org>
  10. * Copyright (c) 2020 Reuben Dowle <reuben.dowle@4rf.com>
  11. */
  12. #ifndef USE_HOSTCC
  13. #include <common.h>
  14. #include <linux/string.h>
  15. #else
  16. #include <string.h>
  17. #endif /* USE_HOSTCC */
  18. #include <watchdog.h>
  19. #include <u-boot/sha512.h>
  20. const uint8_t sha384_der_prefix[SHA384_DER_LEN] = {
  21. 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
  22. 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
  23. 0x00, 0x04, 0x30
  24. };
  25. const uint8_t sha512_der_prefix[SHA512_DER_LEN] = {
  26. 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
  27. 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
  28. 0x00, 0x04, 0x40
  29. };
  30. #define SHA384_H0 0xcbbb9d5dc1059ed8ULL
  31. #define SHA384_H1 0x629a292a367cd507ULL
  32. #define SHA384_H2 0x9159015a3070dd17ULL
  33. #define SHA384_H3 0x152fecd8f70e5939ULL
  34. #define SHA384_H4 0x67332667ffc00b31ULL
  35. #define SHA384_H5 0x8eb44a8768581511ULL
  36. #define SHA384_H6 0xdb0c2e0d64f98fa7ULL
  37. #define SHA384_H7 0x47b5481dbefa4fa4ULL
  38. #define SHA512_H0 0x6a09e667f3bcc908ULL
  39. #define SHA512_H1 0xbb67ae8584caa73bULL
  40. #define SHA512_H2 0x3c6ef372fe94f82bULL
  41. #define SHA512_H3 0xa54ff53a5f1d36f1ULL
  42. #define SHA512_H4 0x510e527fade682d1ULL
  43. #define SHA512_H5 0x9b05688c2b3e6c1fULL
  44. #define SHA512_H6 0x1f83d9abfb41bd6bULL
  45. #define SHA512_H7 0x5be0cd19137e2179ULL
  46. static inline uint64_t Ch(uint64_t x, uint64_t y, uint64_t z)
  47. {
  48. return z ^ (x & (y ^ z));
  49. }
  50. static inline uint64_t Maj(uint64_t x, uint64_t y, uint64_t z)
  51. {
  52. return (x & y) | (z & (x | y));
  53. }
  54. static const uint64_t sha512_K[80] = {
  55. 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
  56. 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  57. 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
  58. 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  59. 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
  60. 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  61. 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
  62. 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  63. 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
  64. 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  65. 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
  66. 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  67. 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
  68. 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  69. 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
  70. 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  71. 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
  72. 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  73. 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
  74. 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  75. 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
  76. 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  77. 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
  78. 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  79. 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
  80. 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  81. 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
  82. };
  83. static inline uint64_t ror64(uint64_t word, unsigned int shift)
  84. {
  85. return (word >> (shift & 63)) | (word << ((-shift) & 63));
  86. }
  87. #define e0(x) (ror64(x,28) ^ ror64(x,34) ^ ror64(x,39))
  88. #define e1(x) (ror64(x,14) ^ ror64(x,18) ^ ror64(x,41))
  89. #define s0(x) (ror64(x, 1) ^ ror64(x, 8) ^ (x >> 7))
  90. #define s1(x) (ror64(x,19) ^ ror64(x,61) ^ (x >> 6))
  91. /*
  92. * 64-bit integer manipulation macros (big endian)
  93. */
  94. #ifndef GET_UINT64_BE
  95. #define GET_UINT64_BE(n,b,i) { \
  96. (n) = ( (unsigned long long) (b)[(i) ] << 56 ) \
  97. | ( (unsigned long long) (b)[(i) + 1] << 48 ) \
  98. | ( (unsigned long long) (b)[(i) + 2] << 40 ) \
  99. | ( (unsigned long long) (b)[(i) + 3] << 32 ) \
  100. | ( (unsigned long long) (b)[(i) + 4] << 24 ) \
  101. | ( (unsigned long long) (b)[(i) + 5] << 16 ) \
  102. | ( (unsigned long long) (b)[(i) + 6] << 8 ) \
  103. | ( (unsigned long long) (b)[(i) + 7] ); \
  104. }
  105. #endif
  106. #ifndef PUT_UINT64_BE
  107. #define PUT_UINT64_BE(n,b,i) { \
  108. (b)[(i) ] = (unsigned char) ( (n) >> 56 ); \
  109. (b)[(i) + 1] = (unsigned char) ( (n) >> 48 ); \
  110. (b)[(i) + 2] = (unsigned char) ( (n) >> 40 ); \
  111. (b)[(i) + 3] = (unsigned char) ( (n) >> 32 ); \
  112. (b)[(i) + 4] = (unsigned char) ( (n) >> 24 ); \
  113. (b)[(i) + 5] = (unsigned char) ( (n) >> 16 ); \
  114. (b)[(i) + 6] = (unsigned char) ( (n) >> 8 ); \
  115. (b)[(i) + 7] = (unsigned char) ( (n) ); \
  116. }
  117. #endif
  118. static inline void LOAD_OP(int I, uint64_t *W, const uint8_t *input)
  119. {
  120. GET_UINT64_BE(W[I], input, I*8);
  121. }
  122. static inline void BLEND_OP(int I, uint64_t *W)
  123. {
  124. W[I & 15] += s1(W[(I-2) & 15]) + W[(I-7) & 15] + s0(W[(I-15) & 15]);
  125. }
  126. static void
  127. sha512_transform(uint64_t *state, const uint8_t *input)
  128. {
  129. uint64_t a, b, c, d, e, f, g, h, t1, t2;
  130. int i;
  131. uint64_t W[16];
  132. /* load the state into our registers */
  133. a=state[0]; b=state[1]; c=state[2]; d=state[3];
  134. e=state[4]; f=state[5]; g=state[6]; h=state[7];
  135. /* now iterate */
  136. for (i=0; i<80; i+=8) {
  137. if (!(i & 8)) {
  138. int j;
  139. if (i < 16) {
  140. /* load the input */
  141. for (j = 0; j < 16; j++)
  142. LOAD_OP(i + j, W, input);
  143. } else {
  144. for (j = 0; j < 16; j++) {
  145. BLEND_OP(i + j, W);
  146. }
  147. }
  148. }
  149. t1 = h + e1(e) + Ch(e,f,g) + sha512_K[i ] + W[(i & 15)];
  150. t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
  151. t1 = g + e1(d) + Ch(d,e,f) + sha512_K[i+1] + W[(i & 15) + 1];
  152. t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
  153. t1 = f + e1(c) + Ch(c,d,e) + sha512_K[i+2] + W[(i & 15) + 2];
  154. t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
  155. t1 = e + e1(b) + Ch(b,c,d) + sha512_K[i+3] + W[(i & 15) + 3];
  156. t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
  157. t1 = d + e1(a) + Ch(a,b,c) + sha512_K[i+4] + W[(i & 15) + 4];
  158. t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
  159. t1 = c + e1(h) + Ch(h,a,b) + sha512_K[i+5] + W[(i & 15) + 5];
  160. t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
  161. t1 = b + e1(g) + Ch(g,h,a) + sha512_K[i+6] + W[(i & 15) + 6];
  162. t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
  163. t1 = a + e1(f) + Ch(f,g,h) + sha512_K[i+7] + W[(i & 15) + 7];
  164. t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
  165. }
  166. state[0] += a; state[1] += b; state[2] += c; state[3] += d;
  167. state[4] += e; state[5] += f; state[6] += g; state[7] += h;
  168. /* erase our data */
  169. a = b = c = d = e = f = g = h = t1 = t2 = 0;
  170. }
  171. static void sha512_block_fn(sha512_context *sst, const uint8_t *src,
  172. int blocks)
  173. {
  174. while (blocks--) {
  175. sha512_transform(sst->state, src);
  176. src += SHA512_BLOCK_SIZE;
  177. }
  178. }
  179. static void sha512_base_do_update(sha512_context *sctx,
  180. const uint8_t *data,
  181. unsigned int len)
  182. {
  183. unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
  184. sctx->count[0] += len;
  185. if (sctx->count[0] < len)
  186. sctx->count[1]++;
  187. if (unlikely((partial + len) >= SHA512_BLOCK_SIZE)) {
  188. int blocks;
  189. if (partial) {
  190. int p = SHA512_BLOCK_SIZE - partial;
  191. memcpy(sctx->buf + partial, data, p);
  192. data += p;
  193. len -= p;
  194. sha512_block_fn(sctx, sctx->buf, 1);
  195. }
  196. blocks = len / SHA512_BLOCK_SIZE;
  197. len %= SHA512_BLOCK_SIZE;
  198. if (blocks) {
  199. sha512_block_fn(sctx, data, blocks);
  200. data += blocks * SHA512_BLOCK_SIZE;
  201. }
  202. partial = 0;
  203. }
  204. if (len)
  205. memcpy(sctx->buf + partial, data, len);
  206. }
  207. static void sha512_base_do_finalize(sha512_context *sctx)
  208. {
  209. const int bit_offset = SHA512_BLOCK_SIZE - sizeof(uint64_t[2]);
  210. uint64_t *bits = (uint64_t *)(sctx->buf + bit_offset);
  211. unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
  212. sctx->buf[partial++] = 0x80;
  213. if (partial > bit_offset) {
  214. memset(sctx->buf + partial, 0x0, SHA512_BLOCK_SIZE - partial);
  215. partial = 0;
  216. sha512_block_fn(sctx, sctx->buf, 1);
  217. }
  218. memset(sctx->buf + partial, 0x0, bit_offset - partial);
  219. bits[0] = cpu_to_be64(sctx->count[1] << 3 | sctx->count[0] >> 61);
  220. bits[1] = cpu_to_be64(sctx->count[0] << 3);
  221. sha512_block_fn(sctx, sctx->buf, 1);
  222. }
  223. #if defined(CONFIG_SHA384)
  224. void sha384_starts(sha512_context * ctx)
  225. {
  226. ctx->state[0] = SHA384_H0;
  227. ctx->state[1] = SHA384_H1;
  228. ctx->state[2] = SHA384_H2;
  229. ctx->state[3] = SHA384_H3;
  230. ctx->state[4] = SHA384_H4;
  231. ctx->state[5] = SHA384_H5;
  232. ctx->state[6] = SHA384_H6;
  233. ctx->state[7] = SHA384_H7;
  234. ctx->count[0] = ctx->count[1] = 0;
  235. }
  236. void sha384_update(sha512_context *ctx, const uint8_t *input, uint32_t length)
  237. {
  238. sha512_base_do_update(ctx, input, length);
  239. }
  240. void sha384_finish(sha512_context * ctx, uint8_t digest[SHA384_SUM_LEN])
  241. {
  242. int i;
  243. sha512_base_do_finalize(ctx);
  244. for(i=0; i<SHA384_SUM_LEN / sizeof(uint64_t); i++)
  245. PUT_UINT64_BE(ctx->state[i], digest, i * 8);
  246. }
  247. /*
  248. * Output = SHA-512( input buffer ). Trigger the watchdog every 'chunk_sz'
  249. * bytes of input processed.
  250. */
  251. void sha384_csum_wd(const unsigned char *input, unsigned int ilen,
  252. unsigned char *output, unsigned int chunk_sz)
  253. {
  254. sha512_context ctx;
  255. #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
  256. const unsigned char *end;
  257. unsigned char *curr;
  258. int chunk;
  259. #endif
  260. sha384_starts(&ctx);
  261. #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
  262. curr = (unsigned char *)input;
  263. end = input + ilen;
  264. while (curr < end) {
  265. chunk = end - curr;
  266. if (chunk > chunk_sz)
  267. chunk = chunk_sz;
  268. sha384_update(&ctx, curr, chunk);
  269. curr += chunk;
  270. WATCHDOG_RESET();
  271. }
  272. #else
  273. sha384_update(&ctx, input, ilen);
  274. #endif
  275. sha384_finish(&ctx, output);
  276. }
  277. #endif
  278. #if defined(CONFIG_SHA512)
  279. void sha512_starts(sha512_context * ctx)
  280. {
  281. ctx->state[0] = SHA512_H0;
  282. ctx->state[1] = SHA512_H1;
  283. ctx->state[2] = SHA512_H2;
  284. ctx->state[3] = SHA512_H3;
  285. ctx->state[4] = SHA512_H4;
  286. ctx->state[5] = SHA512_H5;
  287. ctx->state[6] = SHA512_H6;
  288. ctx->state[7] = SHA512_H7;
  289. ctx->count[0] = ctx->count[1] = 0;
  290. }
  291. void sha512_update(sha512_context *ctx, const uint8_t *input, uint32_t length)
  292. {
  293. sha512_base_do_update(ctx, input, length);
  294. }
  295. void sha512_finish(sha512_context * ctx, uint8_t digest[SHA512_SUM_LEN])
  296. {
  297. int i;
  298. sha512_base_do_finalize(ctx);
  299. for(i=0; i<SHA512_SUM_LEN / sizeof(uint64_t); i++)
  300. PUT_UINT64_BE(ctx->state[i], digest, i * 8);
  301. }
  302. /*
  303. * Output = SHA-512( input buffer ). Trigger the watchdog every 'chunk_sz'
  304. * bytes of input processed.
  305. */
  306. void sha512_csum_wd(const unsigned char *input, unsigned int ilen,
  307. unsigned char *output, unsigned int chunk_sz)
  308. {
  309. sha512_context ctx;
  310. #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
  311. const unsigned char *end;
  312. unsigned char *curr;
  313. int chunk;
  314. #endif
  315. sha512_starts(&ctx);
  316. #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
  317. curr = (unsigned char *)input;
  318. end = input + ilen;
  319. while (curr < end) {
  320. chunk = end - curr;
  321. if (chunk > chunk_sz)
  322. chunk = chunk_sz;
  323. sha512_update(&ctx, curr, chunk);
  324. curr += chunk;
  325. WATCHDOG_RESET();
  326. }
  327. #else
  328. sha512_update(&ctx, input, ilen);
  329. #endif
  330. sha512_finish(&ctx, output);
  331. }
  332. #endif