lmb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Procedures for maintaining information about logical memory blocks.
  4. *
  5. * Peter Bergner, IBM Corp. June 2001.
  6. * Copyright (C) 2001 Peter Bergner.
  7. */
  8. #include <common.h>
  9. #include <image.h>
  10. #include <lmb.h>
  11. #include <log.h>
  12. #include <malloc.h>
  13. #define LMB_ALLOC_ANYWHERE 0
  14. void lmb_dump_all_force(struct lmb *lmb)
  15. {
  16. unsigned long i;
  17. printf("lmb_dump_all:\n");
  18. printf(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
  19. printf(" memory.size = 0x%llx\n",
  20. (unsigned long long)lmb->memory.size);
  21. for (i = 0; i < lmb->memory.cnt; i++) {
  22. printf(" memory.reg[0x%lx].base = 0x%llx\n", i,
  23. (unsigned long long)lmb->memory.region[i].base);
  24. printf(" .size = 0x%llx\n",
  25. (unsigned long long)lmb->memory.region[i].size);
  26. }
  27. printf("\n reserved.cnt = 0x%lx\n", lmb->reserved.cnt);
  28. printf(" reserved.size = 0x%llx\n",
  29. (unsigned long long)lmb->reserved.size);
  30. for (i = 0; i < lmb->reserved.cnt; i++) {
  31. printf(" reserved.reg[0x%lx].base = 0x%llx\n", i,
  32. (unsigned long long)lmb->reserved.region[i].base);
  33. printf(" .size = 0x%llx\n",
  34. (unsigned long long)lmb->reserved.region[i].size);
  35. }
  36. }
  37. void lmb_dump_all(struct lmb *lmb)
  38. {
  39. #ifdef DEBUG
  40. lmb_dump_all_force(lmb);
  41. #endif
  42. }
  43. static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
  44. phys_addr_t base2, phys_size_t size2)
  45. {
  46. const phys_addr_t base1_end = base1 + size1 - 1;
  47. const phys_addr_t base2_end = base2 + size2 - 1;
  48. return ((base1 <= base2_end) && (base2 <= base1_end));
  49. }
  50. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  51. phys_addr_t base2, phys_size_t size2)
  52. {
  53. if (base2 == base1 + size1)
  54. return 1;
  55. else if (base1 == base2 + size2)
  56. return -1;
  57. return 0;
  58. }
  59. static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1,
  60. unsigned long r2)
  61. {
  62. phys_addr_t base1 = rgn->region[r1].base;
  63. phys_size_t size1 = rgn->region[r1].size;
  64. phys_addr_t base2 = rgn->region[r2].base;
  65. phys_size_t size2 = rgn->region[r2].size;
  66. return lmb_addrs_adjacent(base1, size1, base2, size2);
  67. }
  68. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  69. {
  70. unsigned long i;
  71. for (i = r; i < rgn->cnt - 1; i++) {
  72. rgn->region[i].base = rgn->region[i + 1].base;
  73. rgn->region[i].size = rgn->region[i + 1].size;
  74. }
  75. rgn->cnt--;
  76. }
  77. /* Assumption: base addr of region 1 < base addr of region 2 */
  78. static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1,
  79. unsigned long r2)
  80. {
  81. rgn->region[r1].size += rgn->region[r2].size;
  82. lmb_remove_region(rgn, r2);
  83. }
  84. void lmb_init(struct lmb *lmb)
  85. {
  86. lmb->memory.cnt = 0;
  87. lmb->memory.size = 0;
  88. lmb->reserved.cnt = 0;
  89. lmb->reserved.size = 0;
  90. }
  91. static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob)
  92. {
  93. arch_lmb_reserve(lmb);
  94. board_lmb_reserve(lmb);
  95. if (IMAGE_ENABLE_OF_LIBFDT && fdt_blob)
  96. boot_fdt_add_mem_rsv_regions(lmb, fdt_blob);
  97. }
  98. /* Initialize the struct, add memory and call arch/board reserve functions */
  99. void lmb_init_and_reserve(struct lmb *lmb, struct bd_info *bd, void *fdt_blob)
  100. {
  101. int i;
  102. lmb_init(lmb);
  103. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  104. if (bd->bi_dram[i].size) {
  105. lmb_add(lmb, bd->bi_dram[i].start,
  106. bd->bi_dram[i].size);
  107. }
  108. }
  109. lmb_reserve_common(lmb, fdt_blob);
  110. }
  111. /* Initialize the struct, add memory and call arch/board reserve functions */
  112. void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
  113. phys_size_t size, void *fdt_blob)
  114. {
  115. lmb_init(lmb);
  116. lmb_add(lmb, base, size);
  117. lmb_reserve_common(lmb, fdt_blob);
  118. }
  119. /* This routine called with relocation disabled. */
  120. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size)
  121. {
  122. unsigned long coalesced = 0;
  123. long adjacent, i;
  124. if (rgn->cnt == 0) {
  125. rgn->region[0].base = base;
  126. rgn->region[0].size = size;
  127. rgn->cnt = 1;
  128. return 0;
  129. }
  130. /* First try and coalesce this LMB with another. */
  131. for (i = 0; i < rgn->cnt; i++) {
  132. phys_addr_t rgnbase = rgn->region[i].base;
  133. phys_size_t rgnsize = rgn->region[i].size;
  134. if ((rgnbase == base) && (rgnsize == size))
  135. /* Already have this region, so we're done */
  136. return 0;
  137. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  138. if (adjacent > 0) {
  139. rgn->region[i].base -= size;
  140. rgn->region[i].size += size;
  141. coalesced++;
  142. break;
  143. } else if (adjacent < 0) {
  144. rgn->region[i].size += size;
  145. coalesced++;
  146. break;
  147. } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
  148. /* regions overlap */
  149. return -1;
  150. }
  151. }
  152. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) {
  153. lmb_coalesce_regions(rgn, i, i + 1);
  154. coalesced++;
  155. }
  156. if (coalesced)
  157. return coalesced;
  158. if (rgn->cnt >= MAX_LMB_REGIONS)
  159. return -1;
  160. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  161. for (i = rgn->cnt-1; i >= 0; i--) {
  162. if (base < rgn->region[i].base) {
  163. rgn->region[i + 1].base = rgn->region[i].base;
  164. rgn->region[i + 1].size = rgn->region[i].size;
  165. } else {
  166. rgn->region[i + 1].base = base;
  167. rgn->region[i + 1].size = size;
  168. break;
  169. }
  170. }
  171. if (base < rgn->region[0].base) {
  172. rgn->region[0].base = base;
  173. rgn->region[0].size = size;
  174. }
  175. rgn->cnt++;
  176. return 0;
  177. }
  178. /* This routine may be called with relocation disabled. */
  179. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  180. {
  181. struct lmb_region *_rgn = &(lmb->memory);
  182. return lmb_add_region(_rgn, base, size);
  183. }
  184. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  185. {
  186. struct lmb_region *rgn = &(lmb->reserved);
  187. phys_addr_t rgnbegin, rgnend;
  188. phys_addr_t end = base + size - 1;
  189. int i;
  190. rgnbegin = rgnend = 0; /* supress gcc warnings */
  191. /* Find the region where (base, size) belongs to */
  192. for (i = 0; i < rgn->cnt; i++) {
  193. rgnbegin = rgn->region[i].base;
  194. rgnend = rgnbegin + rgn->region[i].size - 1;
  195. if ((rgnbegin <= base) && (end <= rgnend))
  196. break;
  197. }
  198. /* Didn't find the region */
  199. if (i == rgn->cnt)
  200. return -1;
  201. /* Check to see if we are removing entire region */
  202. if ((rgnbegin == base) && (rgnend == end)) {
  203. lmb_remove_region(rgn, i);
  204. return 0;
  205. }
  206. /* Check to see if region is matching at the front */
  207. if (rgnbegin == base) {
  208. rgn->region[i].base = end + 1;
  209. rgn->region[i].size -= size;
  210. return 0;
  211. }
  212. /* Check to see if the region is matching at the end */
  213. if (rgnend == end) {
  214. rgn->region[i].size -= size;
  215. return 0;
  216. }
  217. /*
  218. * We need to split the entry - adjust the current one to the
  219. * beginging of the hole and add the region after hole.
  220. */
  221. rgn->region[i].size = base - rgn->region[i].base;
  222. return lmb_add_region(rgn, end + 1, rgnend - end);
  223. }
  224. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  225. {
  226. struct lmb_region *_rgn = &(lmb->reserved);
  227. return lmb_add_region(_rgn, base, size);
  228. }
  229. static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  230. phys_size_t size)
  231. {
  232. unsigned long i;
  233. for (i = 0; i < rgn->cnt; i++) {
  234. phys_addr_t rgnbase = rgn->region[i].base;
  235. phys_size_t rgnsize = rgn->region[i].size;
  236. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  237. break;
  238. }
  239. return (i < rgn->cnt) ? i : -1;
  240. }
  241. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  242. {
  243. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  244. }
  245. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  246. {
  247. phys_addr_t alloc;
  248. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  249. if (alloc == 0)
  250. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  251. (ulong)size, (ulong)max_addr);
  252. return alloc;
  253. }
  254. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  255. {
  256. return addr & ~(size - 1);
  257. }
  258. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  259. {
  260. long i, rgn;
  261. phys_addr_t base = 0;
  262. phys_addr_t res_base;
  263. for (i = lmb->memory.cnt - 1; i >= 0; i--) {
  264. phys_addr_t lmbbase = lmb->memory.region[i].base;
  265. phys_size_t lmbsize = lmb->memory.region[i].size;
  266. if (lmbsize < size)
  267. continue;
  268. if (max_addr == LMB_ALLOC_ANYWHERE)
  269. base = lmb_align_down(lmbbase + lmbsize - size, align);
  270. else if (lmbbase < max_addr) {
  271. base = lmbbase + lmbsize;
  272. if (base < lmbbase)
  273. base = -1;
  274. base = min(base, max_addr);
  275. base = lmb_align_down(base - size, align);
  276. } else
  277. continue;
  278. while (base && lmbbase <= base) {
  279. rgn = lmb_overlaps_region(&lmb->reserved, base, size);
  280. if (rgn < 0) {
  281. /* This area isn't reserved, take it */
  282. if (lmb_add_region(&lmb->reserved, base,
  283. size) < 0)
  284. return 0;
  285. return base;
  286. }
  287. res_base = lmb->reserved.region[rgn].base;
  288. if (res_base < size)
  289. break;
  290. base = lmb_align_down(res_base - size, align);
  291. }
  292. }
  293. return 0;
  294. }
  295. /*
  296. * Try to allocate a specific address range: must be in defined memory but not
  297. * reserved
  298. */
  299. phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  300. {
  301. long rgn;
  302. /* Check if the requested address is in one of the memory regions */
  303. rgn = lmb_overlaps_region(&lmb->memory, base, size);
  304. if (rgn >= 0) {
  305. /*
  306. * Check if the requested end address is in the same memory
  307. * region we found.
  308. */
  309. if (lmb_addrs_overlap(lmb->memory.region[rgn].base,
  310. lmb->memory.region[rgn].size,
  311. base + size - 1, 1)) {
  312. /* ok, reserve the memory */
  313. if (lmb_reserve(lmb, base, size) >= 0)
  314. return base;
  315. }
  316. }
  317. return 0;
  318. }
  319. /* Return number of bytes from a given address that are free */
  320. phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr)
  321. {
  322. int i;
  323. long rgn;
  324. /* check if the requested address is in the memory regions */
  325. rgn = lmb_overlaps_region(&lmb->memory, addr, 1);
  326. if (rgn >= 0) {
  327. for (i = 0; i < lmb->reserved.cnt; i++) {
  328. if (addr < lmb->reserved.region[i].base) {
  329. /* first reserved range > requested address */
  330. return lmb->reserved.region[i].base - addr;
  331. }
  332. if (lmb->reserved.region[i].base +
  333. lmb->reserved.region[i].size > addr) {
  334. /* requested addr is in this reserved range */
  335. return 0;
  336. }
  337. }
  338. /* if we come here: no reserved ranges above requested addr */
  339. return lmb->memory.region[lmb->memory.cnt - 1].base +
  340. lmb->memory.region[lmb->memory.cnt - 1].size - addr;
  341. }
  342. return 0;
  343. }
  344. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  345. {
  346. int i;
  347. for (i = 0; i < lmb->reserved.cnt; i++) {
  348. phys_addr_t upper = lmb->reserved.region[i].base +
  349. lmb->reserved.region[i].size - 1;
  350. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  351. return 1;
  352. }
  353. return 0;
  354. }
  355. __weak void board_lmb_reserve(struct lmb *lmb)
  356. {
  357. /* please define platform specific board_lmb_reserve() */
  358. }
  359. __weak void arch_lmb_reserve(struct lmb *lmb)
  360. {
  361. /* please define platform specific arch_lmb_reserve() */
  362. }