zfs_sha256.c 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * GRUB -- GRand Unified Bootloader
  4. * Copyright (C) 1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc.
  5. */
  6. /*
  7. * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
  8. * Use is subject to license terms.
  9. */
  10. #include <common.h>
  11. #include <malloc.h>
  12. #include <linux/stat.h>
  13. #include <linux/time.h>
  14. #include <linux/ctype.h>
  15. #include <asm/byteorder.h>
  16. #include "zfs_common.h"
  17. #include <zfs/zfs.h>
  18. #include <zfs/zio.h>
  19. #include <zfs/dnode.h>
  20. #include <zfs/uberblock_impl.h>
  21. #include <zfs/vdev_impl.h>
  22. #include <zfs/zio_checksum.h>
  23. #include <zfs/zap_impl.h>
  24. #include <zfs/zap_leaf.h>
  25. #include <zfs/zfs_znode.h>
  26. #include <zfs/dmu.h>
  27. #include <zfs/dmu_objset.h>
  28. #include <zfs/dsl_dir.h>
  29. #include <zfs/dsl_dataset.h>
  30. /*
  31. * SHA-256 checksum, as specified in FIPS 180-2, available at:
  32. * http://csrc.nist.gov/cryptval
  33. *
  34. * This is a very compact implementation of SHA-256.
  35. * It is designed to be simple and portable, not to be fast.
  36. */
  37. /*
  38. * The literal definitions according to FIPS180-2 would be:
  39. *
  40. * Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
  41. * Maj(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
  42. *
  43. * We use logical equivalents which require one less op.
  44. */
  45. #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
  46. #define Maj(x, y, z) (((x) & (y)) ^ ((z) & ((x) ^ (y))))
  47. #define Rot32(x, s) (((x) >> s) | ((x) << (32 - s)))
  48. #define SIGMA0(x) (Rot32(x, 2) ^ Rot32(x, 13) ^ Rot32(x, 22))
  49. #define SIGMA1(x) (Rot32(x, 6) ^ Rot32(x, 11) ^ Rot32(x, 25))
  50. #define sigma0(x) (Rot32(x, 7) ^ Rot32(x, 18) ^ ((x) >> 3))
  51. #define sigma1(x) (Rot32(x, 17) ^ Rot32(x, 19) ^ ((x) >> 10))
  52. static const uint32_t SHA256_K[64] = {
  53. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  54. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  55. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  56. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  57. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  58. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  59. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  60. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  61. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  62. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  63. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  64. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  65. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  66. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  67. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  68. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  69. };
  70. static void
  71. SHA256Transform(uint32_t *H, const uint8_t *cp)
  72. {
  73. uint32_t a, b, c, d, e, f, g, h, t, T1, T2, W[64];
  74. for (t = 0; t < 16; t++, cp += 4)
  75. W[t] = (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | cp[3];
  76. for (t = 16; t < 64; t++)
  77. W[t] = sigma1(W[t - 2]) + W[t - 7] +
  78. sigma0(W[t - 15]) + W[t - 16];
  79. a = H[0]; b = H[1]; c = H[2]; d = H[3];
  80. e = H[4]; f = H[5]; g = H[6]; h = H[7];
  81. for (t = 0; t < 64; t++) {
  82. T1 = h + SIGMA1(e) + Ch(e, f, g) + SHA256_K[t] + W[t];
  83. T2 = SIGMA0(a) + Maj(a, b, c);
  84. h = g; g = f; f = e; e = d + T1;
  85. d = c; c = b; b = a; a = T1 + T2;
  86. }
  87. H[0] += a; H[1] += b; H[2] += c; H[3] += d;
  88. H[4] += e; H[5] += f; H[6] += g; H[7] += h;
  89. }
  90. void
  91. zio_checksum_SHA256(const void *buf, uint64_t size,
  92. zfs_endian_t endian, zio_cksum_t *zcp)
  93. {
  94. uint32_t H[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
  95. 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
  96. uint8_t pad[128];
  97. unsigned padsize = size & 63;
  98. unsigned i;
  99. for (i = 0; i < size - padsize; i += 64)
  100. SHA256Transform(H, (uint8_t *)buf + i);
  101. for (i = 0; i < padsize; i++)
  102. pad[i] = ((uint8_t *)buf)[i];
  103. for (pad[padsize++] = 0x80; (padsize & 63) != 56; padsize++)
  104. pad[padsize] = 0;
  105. for (i = 0; i < 8; i++)
  106. pad[padsize++] = (size << 3) >> (56 - 8 * i);
  107. for (i = 0; i < padsize; i += 64)
  108. SHA256Transform(H, pad + i);
  109. zcp->zc_word[0] = cpu_to_zfs64((uint64_t)H[0] << 32 | H[1],
  110. endian);
  111. zcp->zc_word[1] = cpu_to_zfs64((uint64_t)H[2] << 32 | H[3],
  112. endian);
  113. zcp->zc_word[2] = cpu_to_zfs64((uint64_t)H[4] << 32 | H[5],
  114. endian);
  115. zcp->zc_word[3] = cpu_to_zfs64((uint64_t)H[6] << 32 | H[7],
  116. endian);
  117. }