adc.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Tests for the driver model ADC API
  4. *
  5. * Copyright (c) 2015 Samsung Electronics
  6. * Przemyslaw Marczak <p.marczak@samsung.com>
  7. */
  8. #include <common.h>
  9. #include <adc.h>
  10. #include <dm.h>
  11. #include <dm/root.h>
  12. #include <dm/util.h>
  13. #include <dm/test.h>
  14. #include <errno.h>
  15. #include <fdtdec.h>
  16. #include <power/regulator.h>
  17. #include <power/sandbox_pmic.h>
  18. #include <sandbox-adc.h>
  19. #include <test/ut.h>
  20. static int dm_test_adc_bind(struct unit_test_state *uts)
  21. {
  22. struct udevice *dev;
  23. unsigned int channel_mask;
  24. ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc", &dev));
  25. ut_asserteq_str(SANDBOX_ADC_DEVNAME, dev->name);
  26. ut_assertok(adc_channel_mask(dev, &channel_mask));
  27. ut_asserteq((1 << SANDBOX_ADC_CHANNELS) - 1, channel_mask);
  28. return 0;
  29. }
  30. DM_TEST(dm_test_adc_bind, DM_TESTF_SCAN_FDT);
  31. static int dm_test_adc_wrong_channel_selection(struct unit_test_state *uts)
  32. {
  33. struct udevice *dev;
  34. ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc", &dev));
  35. ut_asserteq(-EINVAL, adc_start_channel(dev, SANDBOX_ADC_CHANNELS));
  36. return 0;
  37. }
  38. DM_TEST(dm_test_adc_wrong_channel_selection, DM_TESTF_SCAN_FDT);
  39. static int dm_test_adc_supply(struct unit_test_state *uts)
  40. {
  41. struct udevice *supply;
  42. struct udevice *dev;
  43. int uV;
  44. ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc", &dev));
  45. /* Test Vss value - predefined 0 uV */
  46. ut_assertok(adc_vss_value(dev, &uV));
  47. ut_asserteq(SANDBOX_ADC_VSS_VALUE, uV);
  48. /* Test Vdd initial value - buck2 */
  49. ut_assertok(adc_vdd_value(dev, &uV));
  50. ut_asserteq(SANDBOX_BUCK2_INITIAL_EXPECTED_UV, uV);
  51. /* Change Vdd value - buck2 manual preset */
  52. ut_assertok(regulator_get_by_devname(SANDBOX_BUCK2_DEVNAME, &supply));
  53. ut_assertok(regulator_set_value(supply, SANDBOX_BUCK2_SET_UV));
  54. ut_asserteq(SANDBOX_BUCK2_SET_UV, regulator_get_value(supply));
  55. /* Update ADC platdata and get new Vdd value */
  56. ut_assertok(adc_vdd_value(dev, &uV));
  57. ut_asserteq(SANDBOX_BUCK2_SET_UV, uV);
  58. /* Disable buck2 and test ADC supply enable function */
  59. ut_assertok(regulator_set_enable(supply, false));
  60. ut_asserteq(false, regulator_get_enable(supply));
  61. /* adc_start_channel() should enable the supply regulator */
  62. ut_assertok(adc_start_channel(dev, 0));
  63. ut_asserteq(true, regulator_get_enable(supply));
  64. return 0;
  65. }
  66. DM_TEST(dm_test_adc_supply, DM_TESTF_SCAN_FDT);
  67. struct adc_channel adc_channel_test_data[] = {
  68. { 0, SANDBOX_ADC_CHANNEL0_DATA },
  69. { 1, SANDBOX_ADC_CHANNEL1_DATA },
  70. { 2, SANDBOX_ADC_CHANNEL2_DATA },
  71. { 3, SANDBOX_ADC_CHANNEL3_DATA },
  72. };
  73. static int dm_test_adc_single_channel_conversion(struct unit_test_state *uts)
  74. {
  75. struct adc_channel *tdata = adc_channel_test_data;
  76. unsigned int i, data;
  77. struct udevice *dev;
  78. ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc", &dev));
  79. /* Test each ADC channel's value */
  80. for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) {
  81. ut_assertok(adc_start_channel(dev, tdata->id));
  82. ut_assertok(adc_channel_data(dev, tdata->id, &data));
  83. ut_asserteq(tdata->data, data);
  84. }
  85. return 0;
  86. }
  87. DM_TEST(dm_test_adc_single_channel_conversion, DM_TESTF_SCAN_FDT);
  88. static int dm_test_adc_multi_channel_conversion(struct unit_test_state *uts)
  89. {
  90. struct adc_channel channels[SANDBOX_ADC_CHANNELS];
  91. struct udevice *dev;
  92. struct adc_channel *tdata = adc_channel_test_data;
  93. unsigned int i, channel_mask;
  94. channel_mask = ADC_CHANNEL(0) | ADC_CHANNEL(1) |
  95. ADC_CHANNEL(2) | ADC_CHANNEL(3);
  96. /* Start multi channel conversion */
  97. ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc", &dev));
  98. ut_assertok(adc_start_channels(dev, channel_mask));
  99. ut_assertok(adc_channels_data(dev, channel_mask, channels));
  100. /* Compare the expected and returned conversion data. */
  101. for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++)
  102. ut_asserteq(tdata->data, channels[i].data);
  103. return 0;
  104. }
  105. DM_TEST(dm_test_adc_multi_channel_conversion, DM_TESTF_SCAN_FDT);
  106. static int dm_test_adc_single_channel_shot(struct unit_test_state *uts)
  107. {
  108. struct adc_channel *tdata = adc_channel_test_data;
  109. unsigned int i, data;
  110. for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) {
  111. /* Start single channel conversion */
  112. ut_assertok(adc_channel_single_shot("adc", tdata->id, &data));
  113. /* Compare the expected and returned conversion data. */
  114. ut_asserteq(tdata->data, data);
  115. }
  116. return 0;
  117. }
  118. DM_TEST(dm_test_adc_single_channel_shot, DM_TESTF_SCAN_FDT);
  119. static int dm_test_adc_multi_channel_shot(struct unit_test_state *uts)
  120. {
  121. struct adc_channel channels[SANDBOX_ADC_CHANNELS];
  122. struct adc_channel *tdata = adc_channel_test_data;
  123. unsigned int i, channel_mask;
  124. channel_mask = ADC_CHANNEL(0) | ADC_CHANNEL(1) |
  125. ADC_CHANNEL(2) | ADC_CHANNEL(3);
  126. /* Start single call and multi channel conversion */
  127. ut_assertok(adc_channels_single_shot("adc", channel_mask, channels));
  128. /* Compare the expected and returned conversion data. */
  129. for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++)
  130. ut_asserteq(tdata->data, channels[i].data);
  131. return 0;
  132. }
  133. DM_TEST(dm_test_adc_multi_channel_shot, DM_TESTF_SCAN_FDT);
  134. static const int dm_test_adc_uV_data[SANDBOX_ADC_CHANNELS] = {
  135. ((u64)SANDBOX_ADC_CHANNEL0_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) /
  136. SANDBOX_ADC_DATA_MASK,
  137. ((u64)SANDBOX_ADC_CHANNEL1_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) /
  138. SANDBOX_ADC_DATA_MASK,
  139. ((u64)SANDBOX_ADC_CHANNEL2_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) /
  140. SANDBOX_ADC_DATA_MASK,
  141. ((u64)SANDBOX_ADC_CHANNEL3_DATA * SANDBOX_BUCK2_INITIAL_EXPECTED_UV) /
  142. SANDBOX_ADC_DATA_MASK,
  143. };
  144. static int dm_test_adc_raw_to_uV(struct unit_test_state *uts)
  145. {
  146. struct adc_channel *tdata = adc_channel_test_data;
  147. unsigned int i, data;
  148. struct udevice *dev;
  149. int uV;
  150. ut_assertok(uclass_get_device_by_name(UCLASS_ADC, "adc", &dev));
  151. /* Test each ADC channel's value in microvolts */
  152. for (i = 0; i < SANDBOX_ADC_CHANNELS; i++, tdata++) {
  153. ut_assertok(adc_start_channel(dev, tdata->id));
  154. ut_assertok(adc_channel_data(dev, tdata->id, &data));
  155. ut_assertok(adc_raw_to_uV(dev, data, &uV));
  156. ut_asserteq(dm_test_adc_uV_data[i], uV);
  157. }
  158. return 0;
  159. }
  160. DM_TEST(dm_test_adc_raw_to_uV, DM_TESTF_SCAN_FDT);