lmb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Procedures for maintaining information about logical memory blocks.
  4. *
  5. * Peter Bergner, IBM Corp. June 2001.
  6. * Copyright (C) 2001 Peter Bergner.
  7. */
  8. #include <common.h>
  9. #include <lmb.h>
  10. #include <malloc.h>
  11. #define LMB_ALLOC_ANYWHERE 0
  12. void lmb_dump_all(struct lmb *lmb)
  13. {
  14. #ifdef DEBUG
  15. unsigned long i;
  16. debug("lmb_dump_all:\n");
  17. debug(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
  18. debug(" memory.size = 0x%llx\n",
  19. (unsigned long long)lmb->memory.size);
  20. for (i = 0; i < lmb->memory.cnt; i++) {
  21. debug(" memory.reg[0x%lx].base = 0x%llx\n", i,
  22. (unsigned long long)lmb->memory.region[i].base);
  23. debug(" .size = 0x%llx\n",
  24. (unsigned long long)lmb->memory.region[i].size);
  25. }
  26. debug("\n reserved.cnt = 0x%lx\n",
  27. lmb->reserved.cnt);
  28. debug(" reserved.size = 0x%llx\n",
  29. (unsigned long long)lmb->reserved.size);
  30. for (i = 0; i < lmb->reserved.cnt; i++) {
  31. debug(" reserved.reg[0x%lx].base = 0x%llx\n", i,
  32. (unsigned long long)lmb->reserved.region[i].base);
  33. debug(" .size = 0x%llx\n",
  34. (unsigned long long)lmb->reserved.region[i].size);
  35. }
  36. #endif /* DEBUG */
  37. }
  38. static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
  39. phys_addr_t base2, phys_size_t size2)
  40. {
  41. const phys_addr_t base1_end = base1 + size1 - 1;
  42. const phys_addr_t base2_end = base2 + size2 - 1;
  43. return ((base1 <= base2_end) && (base2 <= base1_end));
  44. }
  45. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  46. phys_addr_t base2, phys_size_t size2)
  47. {
  48. if (base2 == base1 + size1)
  49. return 1;
  50. else if (base1 == base2 + size2)
  51. return -1;
  52. return 0;
  53. }
  54. static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1,
  55. unsigned long r2)
  56. {
  57. phys_addr_t base1 = rgn->region[r1].base;
  58. phys_size_t size1 = rgn->region[r1].size;
  59. phys_addr_t base2 = rgn->region[r2].base;
  60. phys_size_t size2 = rgn->region[r2].size;
  61. return lmb_addrs_adjacent(base1, size1, base2, size2);
  62. }
  63. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  64. {
  65. unsigned long i;
  66. for (i = r; i < rgn->cnt - 1; i++) {
  67. rgn->region[i].base = rgn->region[i + 1].base;
  68. rgn->region[i].size = rgn->region[i + 1].size;
  69. }
  70. rgn->cnt--;
  71. }
  72. /* Assumption: base addr of region 1 < base addr of region 2 */
  73. static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1,
  74. unsigned long r2)
  75. {
  76. rgn->region[r1].size += rgn->region[r2].size;
  77. lmb_remove_region(rgn, r2);
  78. }
  79. void lmb_init(struct lmb *lmb)
  80. {
  81. lmb->memory.cnt = 0;
  82. lmb->memory.size = 0;
  83. lmb->reserved.cnt = 0;
  84. lmb->reserved.size = 0;
  85. }
  86. static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob)
  87. {
  88. arch_lmb_reserve(lmb);
  89. board_lmb_reserve(lmb);
  90. if (IMAGE_ENABLE_OF_LIBFDT && fdt_blob)
  91. boot_fdt_add_mem_rsv_regions(lmb, fdt_blob);
  92. }
  93. /* Initialize the struct, add memory and call arch/board reserve functions */
  94. void lmb_init_and_reserve(struct lmb *lmb, bd_t *bd, void *fdt_blob)
  95. {
  96. #ifdef CONFIG_NR_DRAM_BANKS
  97. int i;
  98. #endif
  99. lmb_init(lmb);
  100. #ifdef CONFIG_NR_DRAM_BANKS
  101. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  102. if (bd->bi_dram[i].size) {
  103. lmb_add(lmb, bd->bi_dram[i].start,
  104. bd->bi_dram[i].size);
  105. }
  106. }
  107. #else
  108. if (bd->bi_memsize)
  109. lmb_add(lmb, bd->bi_memstart, bd->bi_memsize);
  110. #endif
  111. lmb_reserve_common(lmb, fdt_blob);
  112. }
  113. /* Initialize the struct, add memory and call arch/board reserve functions */
  114. void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
  115. phys_size_t size, void *fdt_blob)
  116. {
  117. lmb_init(lmb);
  118. lmb_add(lmb, base, size);
  119. lmb_reserve_common(lmb, fdt_blob);
  120. }
  121. /* This routine called with relocation disabled. */
  122. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size)
  123. {
  124. unsigned long coalesced = 0;
  125. long adjacent, i;
  126. if (rgn->cnt == 0) {
  127. rgn->region[0].base = base;
  128. rgn->region[0].size = size;
  129. rgn->cnt = 1;
  130. return 0;
  131. }
  132. /* First try and coalesce this LMB with another. */
  133. for (i = 0; i < rgn->cnt; i++) {
  134. phys_addr_t rgnbase = rgn->region[i].base;
  135. phys_size_t rgnsize = rgn->region[i].size;
  136. if ((rgnbase == base) && (rgnsize == size))
  137. /* Already have this region, so we're done */
  138. return 0;
  139. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  140. if (adjacent > 0) {
  141. rgn->region[i].base -= size;
  142. rgn->region[i].size += size;
  143. coalesced++;
  144. break;
  145. } else if (adjacent < 0) {
  146. rgn->region[i].size += size;
  147. coalesced++;
  148. break;
  149. } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
  150. /* regions overlap */
  151. return -1;
  152. }
  153. }
  154. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) {
  155. lmb_coalesce_regions(rgn, i, i + 1);
  156. coalesced++;
  157. }
  158. if (coalesced)
  159. return coalesced;
  160. if (rgn->cnt >= MAX_LMB_REGIONS)
  161. return -1;
  162. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  163. for (i = rgn->cnt-1; i >= 0; i--) {
  164. if (base < rgn->region[i].base) {
  165. rgn->region[i + 1].base = rgn->region[i].base;
  166. rgn->region[i + 1].size = rgn->region[i].size;
  167. } else {
  168. rgn->region[i + 1].base = base;
  169. rgn->region[i + 1].size = size;
  170. break;
  171. }
  172. }
  173. if (base < rgn->region[0].base) {
  174. rgn->region[0].base = base;
  175. rgn->region[0].size = size;
  176. }
  177. rgn->cnt++;
  178. return 0;
  179. }
  180. /* This routine may be called with relocation disabled. */
  181. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  182. {
  183. struct lmb_region *_rgn = &(lmb->memory);
  184. return lmb_add_region(_rgn, base, size);
  185. }
  186. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  187. {
  188. struct lmb_region *rgn = &(lmb->reserved);
  189. phys_addr_t rgnbegin, rgnend;
  190. phys_addr_t end = base + size - 1;
  191. int i;
  192. rgnbegin = rgnend = 0; /* supress gcc warnings */
  193. /* Find the region where (base, size) belongs to */
  194. for (i = 0; i < rgn->cnt; i++) {
  195. rgnbegin = rgn->region[i].base;
  196. rgnend = rgnbegin + rgn->region[i].size - 1;
  197. if ((rgnbegin <= base) && (end <= rgnend))
  198. break;
  199. }
  200. /* Didn't find the region */
  201. if (i == rgn->cnt)
  202. return -1;
  203. /* Check to see if we are removing entire region */
  204. if ((rgnbegin == base) && (rgnend == end)) {
  205. lmb_remove_region(rgn, i);
  206. return 0;
  207. }
  208. /* Check to see if region is matching at the front */
  209. if (rgnbegin == base) {
  210. rgn->region[i].base = end + 1;
  211. rgn->region[i].size -= size;
  212. return 0;
  213. }
  214. /* Check to see if the region is matching at the end */
  215. if (rgnend == end) {
  216. rgn->region[i].size -= size;
  217. return 0;
  218. }
  219. /*
  220. * We need to split the entry - adjust the current one to the
  221. * beginging of the hole and add the region after hole.
  222. */
  223. rgn->region[i].size = base - rgn->region[i].base;
  224. return lmb_add_region(rgn, end + 1, rgnend - end);
  225. }
  226. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  227. {
  228. struct lmb_region *_rgn = &(lmb->reserved);
  229. return lmb_add_region(_rgn, base, size);
  230. }
  231. static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  232. phys_size_t size)
  233. {
  234. unsigned long i;
  235. for (i = 0; i < rgn->cnt; i++) {
  236. phys_addr_t rgnbase = rgn->region[i].base;
  237. phys_size_t rgnsize = rgn->region[i].size;
  238. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  239. break;
  240. }
  241. return (i < rgn->cnt) ? i : -1;
  242. }
  243. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  244. {
  245. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  246. }
  247. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  248. {
  249. phys_addr_t alloc;
  250. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  251. if (alloc == 0)
  252. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  253. (ulong)size, (ulong)max_addr);
  254. return alloc;
  255. }
  256. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  257. {
  258. return addr & ~(size - 1);
  259. }
  260. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  261. {
  262. long i, rgn;
  263. phys_addr_t base = 0;
  264. phys_addr_t res_base;
  265. for (i = lmb->memory.cnt - 1; i >= 0; i--) {
  266. phys_addr_t lmbbase = lmb->memory.region[i].base;
  267. phys_size_t lmbsize = lmb->memory.region[i].size;
  268. if (lmbsize < size)
  269. continue;
  270. if (max_addr == LMB_ALLOC_ANYWHERE)
  271. base = lmb_align_down(lmbbase + lmbsize - size, align);
  272. else if (lmbbase < max_addr) {
  273. base = lmbbase + lmbsize;
  274. if (base < lmbbase)
  275. base = -1;
  276. base = min(base, max_addr);
  277. base = lmb_align_down(base - size, align);
  278. } else
  279. continue;
  280. while (base && lmbbase <= base) {
  281. rgn = lmb_overlaps_region(&lmb->reserved, base, size);
  282. if (rgn < 0) {
  283. /* This area isn't reserved, take it */
  284. if (lmb_add_region(&lmb->reserved, base,
  285. size) < 0)
  286. return 0;
  287. return base;
  288. }
  289. res_base = lmb->reserved.region[rgn].base;
  290. if (res_base < size)
  291. break;
  292. base = lmb_align_down(res_base - size, align);
  293. }
  294. }
  295. return 0;
  296. }
  297. /*
  298. * Try to allocate a specific address range: must be in defined memory but not
  299. * reserved
  300. */
  301. phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  302. {
  303. long rgn;
  304. /* Check if the requested address is in one of the memory regions */
  305. rgn = lmb_overlaps_region(&lmb->memory, base, size);
  306. if (rgn >= 0) {
  307. /*
  308. * Check if the requested end address is in the same memory
  309. * region we found.
  310. */
  311. if (lmb_addrs_overlap(lmb->memory.region[rgn].base,
  312. lmb->memory.region[rgn].size,
  313. base + size - 1, 1)) {
  314. /* ok, reserve the memory */
  315. if (lmb_reserve(lmb, base, size) >= 0)
  316. return base;
  317. }
  318. }
  319. return 0;
  320. }
  321. /* Return number of bytes from a given address that are free */
  322. phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr)
  323. {
  324. int i;
  325. long rgn;
  326. /* check if the requested address is in the memory regions */
  327. rgn = lmb_overlaps_region(&lmb->memory, addr, 1);
  328. if (rgn >= 0) {
  329. for (i = 0; i < lmb->reserved.cnt; i++) {
  330. if (addr < lmb->reserved.region[i].base) {
  331. /* first reserved range > requested address */
  332. return lmb->reserved.region[i].base - addr;
  333. }
  334. if (lmb->reserved.region[i].base +
  335. lmb->reserved.region[i].size > addr) {
  336. /* requested addr is in this reserved range */
  337. return 0;
  338. }
  339. }
  340. /* if we come here: no reserved ranges above requested addr */
  341. return lmb->memory.region[lmb->memory.cnt - 1].base +
  342. lmb->memory.region[lmb->memory.cnt - 1].size - addr;
  343. }
  344. return 0;
  345. }
  346. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  347. {
  348. int i;
  349. for (i = 0; i < lmb->reserved.cnt; i++) {
  350. phys_addr_t upper = lmb->reserved.region[i].base +
  351. lmb->reserved.region[i].size - 1;
  352. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  353. return 1;
  354. }
  355. return 0;
  356. }
  357. __weak void board_lmb_reserve(struct lmb *lmb)
  358. {
  359. /* please define platform specific board_lmb_reserve() */
  360. }
  361. __weak void arch_lmb_reserve(struct lmb *lmb)
  362. {
  363. /* please define platform specific arch_lmb_reserve() */
  364. }