clk_stm32mp1.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085
  1. // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
  2. /*
  3. * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
  4. */
  5. #include <common.h>
  6. #include <clk-uclass.h>
  7. #include <div64.h>
  8. #include <dm.h>
  9. #include <regmap.h>
  10. #include <spl.h>
  11. #include <syscon.h>
  12. #include <time.h>
  13. #include <vsprintf.h>
  14. #include <linux/io.h>
  15. #include <linux/iopoll.h>
  16. #include <dt-bindings/clock/stm32mp1-clks.h>
  17. #include <dt-bindings/clock/stm32mp1-clksrc.h>
  18. DECLARE_GLOBAL_DATA_PTR;
  19. #ifndef CONFIG_STM32MP1_TRUSTED
  20. #if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
  21. /* activate clock tree initialization in the driver */
  22. #define STM32MP1_CLOCK_TREE_INIT
  23. #endif
  24. #endif
  25. #define MAX_HSI_HZ 64000000
  26. /* TIMEOUT */
  27. #define TIMEOUT_200MS 200000
  28. #define TIMEOUT_1S 1000000
  29. /* STGEN registers */
  30. #define STGENC_CNTCR 0x00
  31. #define STGENC_CNTSR 0x04
  32. #define STGENC_CNTCVL 0x08
  33. #define STGENC_CNTCVU 0x0C
  34. #define STGENC_CNTFID0 0x20
  35. #define STGENC_CNTCR_EN BIT(0)
  36. /* RCC registers */
  37. #define RCC_OCENSETR 0x0C
  38. #define RCC_OCENCLRR 0x10
  39. #define RCC_HSICFGR 0x18
  40. #define RCC_MPCKSELR 0x20
  41. #define RCC_ASSCKSELR 0x24
  42. #define RCC_RCK12SELR 0x28
  43. #define RCC_MPCKDIVR 0x2C
  44. #define RCC_AXIDIVR 0x30
  45. #define RCC_APB4DIVR 0x3C
  46. #define RCC_APB5DIVR 0x40
  47. #define RCC_RTCDIVR 0x44
  48. #define RCC_MSSCKSELR 0x48
  49. #define RCC_PLL1CR 0x80
  50. #define RCC_PLL1CFGR1 0x84
  51. #define RCC_PLL1CFGR2 0x88
  52. #define RCC_PLL1FRACR 0x8C
  53. #define RCC_PLL1CSGR 0x90
  54. #define RCC_PLL2CR 0x94
  55. #define RCC_PLL2CFGR1 0x98
  56. #define RCC_PLL2CFGR2 0x9C
  57. #define RCC_PLL2FRACR 0xA0
  58. #define RCC_PLL2CSGR 0xA4
  59. #define RCC_I2C46CKSELR 0xC0
  60. #define RCC_CPERCKSELR 0xD0
  61. #define RCC_STGENCKSELR 0xD4
  62. #define RCC_DDRITFCR 0xD8
  63. #define RCC_BDCR 0x140
  64. #define RCC_RDLSICR 0x144
  65. #define RCC_MP_APB4ENSETR 0x200
  66. #define RCC_MP_APB5ENSETR 0x208
  67. #define RCC_MP_AHB5ENSETR 0x210
  68. #define RCC_MP_AHB6ENSETR 0x218
  69. #define RCC_OCRDYR 0x808
  70. #define RCC_DBGCFGR 0x80C
  71. #define RCC_RCK3SELR 0x820
  72. #define RCC_RCK4SELR 0x824
  73. #define RCC_MCUDIVR 0x830
  74. #define RCC_APB1DIVR 0x834
  75. #define RCC_APB2DIVR 0x838
  76. #define RCC_APB3DIVR 0x83C
  77. #define RCC_PLL3CR 0x880
  78. #define RCC_PLL3CFGR1 0x884
  79. #define RCC_PLL3CFGR2 0x888
  80. #define RCC_PLL3FRACR 0x88C
  81. #define RCC_PLL3CSGR 0x890
  82. #define RCC_PLL4CR 0x894
  83. #define RCC_PLL4CFGR1 0x898
  84. #define RCC_PLL4CFGR2 0x89C
  85. #define RCC_PLL4FRACR 0x8A0
  86. #define RCC_PLL4CSGR 0x8A4
  87. #define RCC_I2C12CKSELR 0x8C0
  88. #define RCC_I2C35CKSELR 0x8C4
  89. #define RCC_SPI2S1CKSELR 0x8D8
  90. #define RCC_UART6CKSELR 0x8E4
  91. #define RCC_UART24CKSELR 0x8E8
  92. #define RCC_UART35CKSELR 0x8EC
  93. #define RCC_UART78CKSELR 0x8F0
  94. #define RCC_SDMMC12CKSELR 0x8F4
  95. #define RCC_SDMMC3CKSELR 0x8F8
  96. #define RCC_ETHCKSELR 0x8FC
  97. #define RCC_QSPICKSELR 0x900
  98. #define RCC_FMCCKSELR 0x904
  99. #define RCC_USBCKSELR 0x91C
  100. #define RCC_DSICKSELR 0x924
  101. #define RCC_ADCCKSELR 0x928
  102. #define RCC_MP_APB1ENSETR 0xA00
  103. #define RCC_MP_APB2ENSETR 0XA08
  104. #define RCC_MP_APB3ENSETR 0xA10
  105. #define RCC_MP_AHB2ENSETR 0xA18
  106. #define RCC_MP_AHB3ENSETR 0xA20
  107. #define RCC_MP_AHB4ENSETR 0xA28
  108. /* used for most of SELR register */
  109. #define RCC_SELR_SRC_MASK GENMASK(2, 0)
  110. #define RCC_SELR_SRCRDY BIT(31)
  111. /* Values of RCC_MPCKSELR register */
  112. #define RCC_MPCKSELR_HSI 0
  113. #define RCC_MPCKSELR_HSE 1
  114. #define RCC_MPCKSELR_PLL 2
  115. #define RCC_MPCKSELR_PLL_MPUDIV 3
  116. /* Values of RCC_ASSCKSELR register */
  117. #define RCC_ASSCKSELR_HSI 0
  118. #define RCC_ASSCKSELR_HSE 1
  119. #define RCC_ASSCKSELR_PLL 2
  120. /* Values of RCC_MSSCKSELR register */
  121. #define RCC_MSSCKSELR_HSI 0
  122. #define RCC_MSSCKSELR_HSE 1
  123. #define RCC_MSSCKSELR_CSI 2
  124. #define RCC_MSSCKSELR_PLL 3
  125. /* Values of RCC_CPERCKSELR register */
  126. #define RCC_CPERCKSELR_HSI 0
  127. #define RCC_CPERCKSELR_CSI 1
  128. #define RCC_CPERCKSELR_HSE 2
  129. /* used for most of DIVR register : max div for RTC */
  130. #define RCC_DIVR_DIV_MASK GENMASK(5, 0)
  131. #define RCC_DIVR_DIVRDY BIT(31)
  132. /* Masks for specific DIVR registers */
  133. #define RCC_APBXDIV_MASK GENMASK(2, 0)
  134. #define RCC_MPUDIV_MASK GENMASK(2, 0)
  135. #define RCC_AXIDIV_MASK GENMASK(2, 0)
  136. #define RCC_MCUDIV_MASK GENMASK(3, 0)
  137. /* offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
  138. #define RCC_MP_ENCLRR_OFFSET 4
  139. /* Fields of RCC_BDCR register */
  140. #define RCC_BDCR_LSEON BIT(0)
  141. #define RCC_BDCR_LSEBYP BIT(1)
  142. #define RCC_BDCR_LSERDY BIT(2)
  143. #define RCC_BDCR_DIGBYP BIT(3)
  144. #define RCC_BDCR_LSEDRV_MASK GENMASK(5, 4)
  145. #define RCC_BDCR_LSEDRV_SHIFT 4
  146. #define RCC_BDCR_LSECSSON BIT(8)
  147. #define RCC_BDCR_RTCCKEN BIT(20)
  148. #define RCC_BDCR_RTCSRC_MASK GENMASK(17, 16)
  149. #define RCC_BDCR_RTCSRC_SHIFT 16
  150. /* Fields of RCC_RDLSICR register */
  151. #define RCC_RDLSICR_LSION BIT(0)
  152. #define RCC_RDLSICR_LSIRDY BIT(1)
  153. /* used for ALL PLLNCR registers */
  154. #define RCC_PLLNCR_PLLON BIT(0)
  155. #define RCC_PLLNCR_PLLRDY BIT(1)
  156. #define RCC_PLLNCR_SSCG_CTRL BIT(2)
  157. #define RCC_PLLNCR_DIVPEN BIT(4)
  158. #define RCC_PLLNCR_DIVQEN BIT(5)
  159. #define RCC_PLLNCR_DIVREN BIT(6)
  160. #define RCC_PLLNCR_DIVEN_SHIFT 4
  161. /* used for ALL PLLNCFGR1 registers */
  162. #define RCC_PLLNCFGR1_DIVM_SHIFT 16
  163. #define RCC_PLLNCFGR1_DIVM_MASK GENMASK(21, 16)
  164. #define RCC_PLLNCFGR1_DIVN_SHIFT 0
  165. #define RCC_PLLNCFGR1_DIVN_MASK GENMASK(8, 0)
  166. /* only for PLL3 and PLL4 */
  167. #define RCC_PLLNCFGR1_IFRGE_SHIFT 24
  168. #define RCC_PLLNCFGR1_IFRGE_MASK GENMASK(25, 24)
  169. /* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
  170. #define RCC_PLLNCFGR2_SHIFT(div_id) ((div_id) * 8)
  171. #define RCC_PLLNCFGR2_DIVX_MASK GENMASK(6, 0)
  172. #define RCC_PLLNCFGR2_DIVP_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_P)
  173. #define RCC_PLLNCFGR2_DIVP_MASK GENMASK(6, 0)
  174. #define RCC_PLLNCFGR2_DIVQ_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_Q)
  175. #define RCC_PLLNCFGR2_DIVQ_MASK GENMASK(14, 8)
  176. #define RCC_PLLNCFGR2_DIVR_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_R)
  177. #define RCC_PLLNCFGR2_DIVR_MASK GENMASK(22, 16)
  178. /* used for ALL PLLNFRACR registers */
  179. #define RCC_PLLNFRACR_FRACV_SHIFT 3
  180. #define RCC_PLLNFRACR_FRACV_MASK GENMASK(15, 3)
  181. #define RCC_PLLNFRACR_FRACLE BIT(16)
  182. /* used for ALL PLLNCSGR registers */
  183. #define RCC_PLLNCSGR_INC_STEP_SHIFT 16
  184. #define RCC_PLLNCSGR_INC_STEP_MASK GENMASK(30, 16)
  185. #define RCC_PLLNCSGR_MOD_PER_SHIFT 0
  186. #define RCC_PLLNCSGR_MOD_PER_MASK GENMASK(12, 0)
  187. #define RCC_PLLNCSGR_SSCG_MODE_SHIFT 15
  188. #define RCC_PLLNCSGR_SSCG_MODE_MASK BIT(15)
  189. /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
  190. #define RCC_OCENR_HSION BIT(0)
  191. #define RCC_OCENR_CSION BIT(4)
  192. #define RCC_OCENR_DIGBYP BIT(7)
  193. #define RCC_OCENR_HSEON BIT(8)
  194. #define RCC_OCENR_HSEBYP BIT(10)
  195. #define RCC_OCENR_HSECSSON BIT(11)
  196. /* Fields of RCC_OCRDYR register */
  197. #define RCC_OCRDYR_HSIRDY BIT(0)
  198. #define RCC_OCRDYR_HSIDIVRDY BIT(2)
  199. #define RCC_OCRDYR_CSIRDY BIT(4)
  200. #define RCC_OCRDYR_HSERDY BIT(8)
  201. /* Fields of DDRITFCR register */
  202. #define RCC_DDRITFCR_DDRCKMOD_MASK GENMASK(22, 20)
  203. #define RCC_DDRITFCR_DDRCKMOD_SHIFT 20
  204. #define RCC_DDRITFCR_DDRCKMOD_SSR 0
  205. /* Fields of RCC_HSICFGR register */
  206. #define RCC_HSICFGR_HSIDIV_MASK GENMASK(1, 0)
  207. /* used for MCO related operations */
  208. #define RCC_MCOCFG_MCOON BIT(12)
  209. #define RCC_MCOCFG_MCODIV_MASK GENMASK(7, 4)
  210. #define RCC_MCOCFG_MCODIV_SHIFT 4
  211. #define RCC_MCOCFG_MCOSRC_MASK GENMASK(2, 0)
  212. enum stm32mp1_parent_id {
  213. /*
  214. * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
  215. * they are used as index in osc[] as entry point
  216. */
  217. _HSI,
  218. _HSE,
  219. _CSI,
  220. _LSI,
  221. _LSE,
  222. _I2S_CKIN,
  223. NB_OSC,
  224. /* other parent source */
  225. _HSI_KER = NB_OSC,
  226. _HSE_KER,
  227. _HSE_KER_DIV2,
  228. _CSI_KER,
  229. _PLL1_P,
  230. _PLL1_Q,
  231. _PLL1_R,
  232. _PLL2_P,
  233. _PLL2_Q,
  234. _PLL2_R,
  235. _PLL3_P,
  236. _PLL3_Q,
  237. _PLL3_R,
  238. _PLL4_P,
  239. _PLL4_Q,
  240. _PLL4_R,
  241. _ACLK,
  242. _PCLK1,
  243. _PCLK2,
  244. _PCLK3,
  245. _PCLK4,
  246. _PCLK5,
  247. _HCLK6,
  248. _HCLK2,
  249. _CK_PER,
  250. _CK_MPU,
  251. _CK_MCU,
  252. _DSI_PHY,
  253. _USB_PHY_48,
  254. _PARENT_NB,
  255. _UNKNOWN_ID = 0xff,
  256. };
  257. enum stm32mp1_parent_sel {
  258. _I2C12_SEL,
  259. _I2C35_SEL,
  260. _I2C46_SEL,
  261. _UART6_SEL,
  262. _UART24_SEL,
  263. _UART35_SEL,
  264. _UART78_SEL,
  265. _SDMMC12_SEL,
  266. _SDMMC3_SEL,
  267. _ETH_SEL,
  268. _QSPI_SEL,
  269. _FMC_SEL,
  270. _USBPHY_SEL,
  271. _USBO_SEL,
  272. _STGEN_SEL,
  273. _DSI_SEL,
  274. _ADC12_SEL,
  275. _SPI1_SEL,
  276. _RTC_SEL,
  277. _PARENT_SEL_NB,
  278. _UNKNOWN_SEL = 0xff,
  279. };
  280. enum stm32mp1_pll_id {
  281. _PLL1,
  282. _PLL2,
  283. _PLL3,
  284. _PLL4,
  285. _PLL_NB
  286. };
  287. enum stm32mp1_div_id {
  288. _DIV_P,
  289. _DIV_Q,
  290. _DIV_R,
  291. _DIV_NB,
  292. };
  293. enum stm32mp1_clksrc_id {
  294. CLKSRC_MPU,
  295. CLKSRC_AXI,
  296. CLKSRC_MCU,
  297. CLKSRC_PLL12,
  298. CLKSRC_PLL3,
  299. CLKSRC_PLL4,
  300. CLKSRC_RTC,
  301. CLKSRC_MCO1,
  302. CLKSRC_MCO2,
  303. CLKSRC_NB
  304. };
  305. enum stm32mp1_clkdiv_id {
  306. CLKDIV_MPU,
  307. CLKDIV_AXI,
  308. CLKDIV_MCU,
  309. CLKDIV_APB1,
  310. CLKDIV_APB2,
  311. CLKDIV_APB3,
  312. CLKDIV_APB4,
  313. CLKDIV_APB5,
  314. CLKDIV_RTC,
  315. CLKDIV_MCO1,
  316. CLKDIV_MCO2,
  317. CLKDIV_NB
  318. };
  319. enum stm32mp1_pllcfg {
  320. PLLCFG_M,
  321. PLLCFG_N,
  322. PLLCFG_P,
  323. PLLCFG_Q,
  324. PLLCFG_R,
  325. PLLCFG_O,
  326. PLLCFG_NB
  327. };
  328. enum stm32mp1_pllcsg {
  329. PLLCSG_MOD_PER,
  330. PLLCSG_INC_STEP,
  331. PLLCSG_SSCG_MODE,
  332. PLLCSG_NB
  333. };
  334. enum stm32mp1_plltype {
  335. PLL_800,
  336. PLL_1600,
  337. PLL_TYPE_NB
  338. };
  339. struct stm32mp1_pll {
  340. u8 refclk_min;
  341. u8 refclk_max;
  342. u8 divn_max;
  343. };
  344. struct stm32mp1_clk_gate {
  345. u16 offset;
  346. u8 bit;
  347. u8 index;
  348. u8 set_clr;
  349. u8 sel;
  350. u8 fixed;
  351. };
  352. struct stm32mp1_clk_sel {
  353. u16 offset;
  354. u8 src;
  355. u8 msk;
  356. u8 nb_parent;
  357. const u8 *parent;
  358. };
  359. #define REFCLK_SIZE 4
  360. struct stm32mp1_clk_pll {
  361. enum stm32mp1_plltype plltype;
  362. u16 rckxselr;
  363. u16 pllxcfgr1;
  364. u16 pllxcfgr2;
  365. u16 pllxfracr;
  366. u16 pllxcr;
  367. u16 pllxcsgr;
  368. u8 refclk[REFCLK_SIZE];
  369. };
  370. struct stm32mp1_clk_data {
  371. const struct stm32mp1_clk_gate *gate;
  372. const struct stm32mp1_clk_sel *sel;
  373. const struct stm32mp1_clk_pll *pll;
  374. const int nb_gate;
  375. };
  376. struct stm32mp1_clk_priv {
  377. fdt_addr_t base;
  378. const struct stm32mp1_clk_data *data;
  379. ulong osc[NB_OSC];
  380. struct udevice *osc_dev[NB_OSC];
  381. };
  382. #define STM32MP1_CLK(off, b, idx, s) \
  383. { \
  384. .offset = (off), \
  385. .bit = (b), \
  386. .index = (idx), \
  387. .set_clr = 0, \
  388. .sel = (s), \
  389. .fixed = _UNKNOWN_ID, \
  390. }
  391. #define STM32MP1_CLK_F(off, b, idx, f) \
  392. { \
  393. .offset = (off), \
  394. .bit = (b), \
  395. .index = (idx), \
  396. .set_clr = 0, \
  397. .sel = _UNKNOWN_SEL, \
  398. .fixed = (f), \
  399. }
  400. #define STM32MP1_CLK_SET_CLR(off, b, idx, s) \
  401. { \
  402. .offset = (off), \
  403. .bit = (b), \
  404. .index = (idx), \
  405. .set_clr = 1, \
  406. .sel = (s), \
  407. .fixed = _UNKNOWN_ID, \
  408. }
  409. #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f) \
  410. { \
  411. .offset = (off), \
  412. .bit = (b), \
  413. .index = (idx), \
  414. .set_clr = 1, \
  415. .sel = _UNKNOWN_SEL, \
  416. .fixed = (f), \
  417. }
  418. #define STM32MP1_CLK_PARENT(idx, off, s, m, p) \
  419. [(idx)] = { \
  420. .offset = (off), \
  421. .src = (s), \
  422. .msk = (m), \
  423. .parent = (p), \
  424. .nb_parent = ARRAY_SIZE((p)) \
  425. }
  426. #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
  427. p1, p2, p3, p4) \
  428. [(idx)] = { \
  429. .plltype = (type), \
  430. .rckxselr = (off1), \
  431. .pllxcfgr1 = (off2), \
  432. .pllxcfgr2 = (off3), \
  433. .pllxfracr = (off4), \
  434. .pllxcr = (off5), \
  435. .pllxcsgr = (off6), \
  436. .refclk[0] = (p1), \
  437. .refclk[1] = (p2), \
  438. .refclk[2] = (p3), \
  439. .refclk[3] = (p4), \
  440. }
  441. static const u8 stm32mp1_clks[][2] = {
  442. {CK_PER, _CK_PER},
  443. {CK_MPU, _CK_MPU},
  444. {CK_AXI, _ACLK},
  445. {CK_MCU, _CK_MCU},
  446. {CK_HSE, _HSE},
  447. {CK_CSI, _CSI},
  448. {CK_LSI, _LSI},
  449. {CK_LSE, _LSE},
  450. {CK_HSI, _HSI},
  451. {CK_HSE_DIV2, _HSE_KER_DIV2},
  452. };
  453. static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
  454. STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
  455. STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
  456. STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
  457. STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
  458. STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
  459. STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
  460. STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
  461. STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
  462. STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
  463. STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
  464. STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
  465. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
  466. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
  467. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
  468. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
  469. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
  470. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
  471. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
  472. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
  473. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
  474. STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
  475. STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 8, SPI1_K, _SPI1_SEL),
  476. STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
  477. STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
  478. STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
  479. STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
  480. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
  481. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
  482. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
  483. STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
  484. STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
  485. STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
  486. STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
  487. STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
  488. STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
  489. STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
  490. STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
  491. STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 11, HSEM, _UNKNOWN_SEL),
  492. STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 12, IPCC, _UNKNOWN_SEL),
  493. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
  494. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
  495. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
  496. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
  497. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
  498. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
  499. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
  500. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
  501. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
  502. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
  503. STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
  504. STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
  505. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK_K, _ETH_SEL),
  506. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
  507. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
  508. STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
  509. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
  510. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
  511. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
  512. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
  513. STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
  514. STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
  515. STM32MP1_CLK(RCC_BDCR, 20, RTC, _RTC_SEL),
  516. };
  517. static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
  518. static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
  519. static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
  520. static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
  521. _HSE_KER};
  522. static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
  523. _HSE_KER};
  524. static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
  525. _HSE_KER};
  526. static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
  527. _HSE_KER};
  528. static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
  529. static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
  530. static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
  531. static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
  532. static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
  533. static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
  534. static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
  535. static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
  536. static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
  537. static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
  538. static const u8 spi_parents[] = {_PLL4_P, _PLL3_Q, _I2S_CKIN, _CK_PER,
  539. _PLL3_R};
  540. static const u8 rtc_parents[] = {_UNKNOWN_ID, _LSE, _LSI, _HSE};
  541. static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
  542. STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
  543. STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
  544. STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
  545. STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
  546. STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
  547. uart24_parents),
  548. STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
  549. uart35_parents),
  550. STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
  551. uart78_parents),
  552. STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
  553. sdmmc12_parents),
  554. STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
  555. sdmmc3_parents),
  556. STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
  557. STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0xf, qspi_parents),
  558. STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0xf, fmc_parents),
  559. STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
  560. STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
  561. STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
  562. STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
  563. STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x1, adc_parents),
  564. STM32MP1_CLK_PARENT(_SPI1_SEL, RCC_SPI2S1CKSELR, 0, 0x7, spi_parents),
  565. STM32MP1_CLK_PARENT(_RTC_SEL, RCC_BDCR, RCC_BDCR_RTCSRC_SHIFT,
  566. (RCC_BDCR_RTCSRC_MASK >> RCC_BDCR_RTCSRC_SHIFT),
  567. rtc_parents),
  568. };
  569. #ifdef STM32MP1_CLOCK_TREE_INIT
  570. /* define characteristic of PLL according type */
  571. #define DIVN_MIN 24
  572. static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
  573. [PLL_800] = {
  574. .refclk_min = 4,
  575. .refclk_max = 16,
  576. .divn_max = 99,
  577. },
  578. [PLL_1600] = {
  579. .refclk_min = 8,
  580. .refclk_max = 16,
  581. .divn_max = 199,
  582. },
  583. };
  584. #endif /* STM32MP1_CLOCK_TREE_INIT */
  585. static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
  586. STM32MP1_CLK_PLL(_PLL1, PLL_1600,
  587. RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
  588. RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
  589. _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
  590. STM32MP1_CLK_PLL(_PLL2, PLL_1600,
  591. RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
  592. RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
  593. _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
  594. STM32MP1_CLK_PLL(_PLL3, PLL_800,
  595. RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
  596. RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
  597. _HSI, _HSE, _CSI, _UNKNOWN_ID),
  598. STM32MP1_CLK_PLL(_PLL4, PLL_800,
  599. RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
  600. RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
  601. _HSI, _HSE, _CSI, _I2S_CKIN),
  602. };
  603. /* Prescaler table lookups for clock computation */
  604. /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
  605. static const u8 stm32mp1_mcu_div[16] = {
  606. 0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
  607. };
  608. /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
  609. #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
  610. #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
  611. static const u8 stm32mp1_mpu_apbx_div[8] = {
  612. 0, 1, 2, 3, 4, 4, 4, 4
  613. };
  614. /* div = /1 /2 /3 /4 */
  615. static const u8 stm32mp1_axi_div[8] = {
  616. 1, 2, 3, 4, 4, 4, 4, 4
  617. };
  618. static const __maybe_unused
  619. char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
  620. [_HSI] = "HSI",
  621. [_HSE] = "HSE",
  622. [_CSI] = "CSI",
  623. [_LSI] = "LSI",
  624. [_LSE] = "LSE",
  625. [_I2S_CKIN] = "I2S_CKIN",
  626. [_HSI_KER] = "HSI_KER",
  627. [_HSE_KER] = "HSE_KER",
  628. [_HSE_KER_DIV2] = "HSE_KER_DIV2",
  629. [_CSI_KER] = "CSI_KER",
  630. [_PLL1_P] = "PLL1_P",
  631. [_PLL1_Q] = "PLL1_Q",
  632. [_PLL1_R] = "PLL1_R",
  633. [_PLL2_P] = "PLL2_P",
  634. [_PLL2_Q] = "PLL2_Q",
  635. [_PLL2_R] = "PLL2_R",
  636. [_PLL3_P] = "PLL3_P",
  637. [_PLL3_Q] = "PLL3_Q",
  638. [_PLL3_R] = "PLL3_R",
  639. [_PLL4_P] = "PLL4_P",
  640. [_PLL4_Q] = "PLL4_Q",
  641. [_PLL4_R] = "PLL4_R",
  642. [_ACLK] = "ACLK",
  643. [_PCLK1] = "PCLK1",
  644. [_PCLK2] = "PCLK2",
  645. [_PCLK3] = "PCLK3",
  646. [_PCLK4] = "PCLK4",
  647. [_PCLK5] = "PCLK5",
  648. [_HCLK6] = "KCLK6",
  649. [_HCLK2] = "HCLK2",
  650. [_CK_PER] = "CK_PER",
  651. [_CK_MPU] = "CK_MPU",
  652. [_CK_MCU] = "CK_MCU",
  653. [_USB_PHY_48] = "USB_PHY_48",
  654. [_DSI_PHY] = "DSI_PHY_PLL",
  655. };
  656. static const __maybe_unused
  657. char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
  658. [_I2C12_SEL] = "I2C12",
  659. [_I2C35_SEL] = "I2C35",
  660. [_I2C46_SEL] = "I2C46",
  661. [_UART6_SEL] = "UART6",
  662. [_UART24_SEL] = "UART24",
  663. [_UART35_SEL] = "UART35",
  664. [_UART78_SEL] = "UART78",
  665. [_SDMMC12_SEL] = "SDMMC12",
  666. [_SDMMC3_SEL] = "SDMMC3",
  667. [_ETH_SEL] = "ETH",
  668. [_QSPI_SEL] = "QSPI",
  669. [_FMC_SEL] = "FMC",
  670. [_USBPHY_SEL] = "USBPHY",
  671. [_USBO_SEL] = "USBO",
  672. [_STGEN_SEL] = "STGEN",
  673. [_DSI_SEL] = "DSI",
  674. [_ADC12_SEL] = "ADC12",
  675. [_SPI1_SEL] = "SPI1",
  676. [_RTC_SEL] = "RTC",
  677. };
  678. static const struct stm32mp1_clk_data stm32mp1_data = {
  679. .gate = stm32mp1_clk_gate,
  680. .sel = stm32mp1_clk_sel,
  681. .pll = stm32mp1_clk_pll,
  682. .nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
  683. };
  684. static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
  685. {
  686. if (idx >= NB_OSC) {
  687. debug("%s: clk id %d not found\n", __func__, idx);
  688. return 0;
  689. }
  690. return priv->osc[idx];
  691. }
  692. static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
  693. {
  694. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  695. int i, nb_clks = priv->data->nb_gate;
  696. for (i = 0; i < nb_clks; i++) {
  697. if (gate[i].index == id)
  698. break;
  699. }
  700. if (i == nb_clks) {
  701. printf("%s: clk id %d not found\n", __func__, (u32)id);
  702. return -EINVAL;
  703. }
  704. return i;
  705. }
  706. static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
  707. int i)
  708. {
  709. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  710. if (gate[i].sel > _PARENT_SEL_NB) {
  711. printf("%s: parents for clk id %d not found\n",
  712. __func__, i);
  713. return -EINVAL;
  714. }
  715. return gate[i].sel;
  716. }
  717. static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
  718. int i)
  719. {
  720. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  721. if (gate[i].fixed == _UNKNOWN_ID)
  722. return -ENOENT;
  723. return gate[i].fixed;
  724. }
  725. static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
  726. unsigned long id)
  727. {
  728. const struct stm32mp1_clk_sel *sel = priv->data->sel;
  729. int i;
  730. int s, p;
  731. unsigned int idx;
  732. for (idx = 0; idx < ARRAY_SIZE(stm32mp1_clks); idx++)
  733. if (stm32mp1_clks[idx][0] == id)
  734. return stm32mp1_clks[idx][1];
  735. i = stm32mp1_clk_get_id(priv, id);
  736. if (i < 0)
  737. return i;
  738. p = stm32mp1_clk_get_fixed_parent(priv, i);
  739. if (p >= 0 && p < _PARENT_NB)
  740. return p;
  741. s = stm32mp1_clk_get_sel(priv, i);
  742. if (s < 0)
  743. return s;
  744. p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
  745. if (p < sel[s].nb_parent) {
  746. #ifdef DEBUG
  747. debug("%s: %s clock is the parent %s of clk id %d\n", __func__,
  748. stm32mp1_clk_parent_name[sel[s].parent[p]],
  749. stm32mp1_clk_parent_sel_name[s],
  750. (u32)id);
  751. #endif
  752. return sel[s].parent[p];
  753. }
  754. pr_err("%s: no parents defined for clk id %d\n",
  755. __func__, (u32)id);
  756. return -EINVAL;
  757. }
  758. static ulong pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
  759. int pll_id)
  760. {
  761. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  762. u32 selr;
  763. int src;
  764. ulong refclk;
  765. /* Get current refclk */
  766. selr = readl(priv->base + pll[pll_id].rckxselr);
  767. src = selr & RCC_SELR_SRC_MASK;
  768. refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
  769. return refclk;
  770. }
  771. /*
  772. * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
  773. * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
  774. * - PLL3 & PLL4 => return VCO with Fpll_y_ck = FVCO / (DIVy + 1)
  775. * => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
  776. */
  777. static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
  778. int pll_id)
  779. {
  780. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  781. int divm, divn;
  782. ulong refclk, fvco;
  783. u32 cfgr1, fracr;
  784. cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
  785. fracr = readl(priv->base + pll[pll_id].pllxfracr);
  786. divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
  787. divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
  788. refclk = pll_get_fref_ck(priv, pll_id);
  789. /* with FRACV :
  790. * Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
  791. * without FRACV
  792. * Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
  793. */
  794. if (fracr & RCC_PLLNFRACR_FRACLE) {
  795. u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
  796. >> RCC_PLLNFRACR_FRACV_SHIFT;
  797. fvco = (ulong)lldiv((unsigned long long)refclk *
  798. (((divn + 1) << 13) + fracv),
  799. ((unsigned long long)(divm + 1)) << 13);
  800. } else {
  801. fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
  802. }
  803. return fvco;
  804. }
  805. static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
  806. int pll_id, int div_id)
  807. {
  808. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  809. int divy;
  810. ulong dfout;
  811. u32 cfgr2;
  812. if (div_id >= _DIV_NB)
  813. return 0;
  814. cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
  815. divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
  816. dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
  817. return dfout;
  818. }
  819. static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
  820. {
  821. u32 reg;
  822. ulong clock = 0;
  823. switch (p) {
  824. case _CK_MPU:
  825. /* MPU sub system */
  826. reg = readl(priv->base + RCC_MPCKSELR);
  827. switch (reg & RCC_SELR_SRC_MASK) {
  828. case RCC_MPCKSELR_HSI:
  829. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  830. break;
  831. case RCC_MPCKSELR_HSE:
  832. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  833. break;
  834. case RCC_MPCKSELR_PLL:
  835. case RCC_MPCKSELR_PLL_MPUDIV:
  836. clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
  837. if (p == RCC_MPCKSELR_PLL_MPUDIV) {
  838. reg = readl(priv->base + RCC_MPCKDIVR);
  839. clock /= stm32mp1_mpu_div[reg &
  840. RCC_MPUDIV_MASK];
  841. }
  842. break;
  843. }
  844. break;
  845. /* AXI sub system */
  846. case _ACLK:
  847. case _HCLK2:
  848. case _HCLK6:
  849. case _PCLK4:
  850. case _PCLK5:
  851. reg = readl(priv->base + RCC_ASSCKSELR);
  852. switch (reg & RCC_SELR_SRC_MASK) {
  853. case RCC_ASSCKSELR_HSI:
  854. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  855. break;
  856. case RCC_ASSCKSELR_HSE:
  857. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  858. break;
  859. case RCC_ASSCKSELR_PLL:
  860. clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
  861. break;
  862. }
  863. /* System clock divider */
  864. reg = readl(priv->base + RCC_AXIDIVR);
  865. clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
  866. switch (p) {
  867. case _PCLK4:
  868. reg = readl(priv->base + RCC_APB4DIVR);
  869. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  870. break;
  871. case _PCLK5:
  872. reg = readl(priv->base + RCC_APB5DIVR);
  873. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  874. break;
  875. default:
  876. break;
  877. }
  878. break;
  879. /* MCU sub system */
  880. case _CK_MCU:
  881. case _PCLK1:
  882. case _PCLK2:
  883. case _PCLK3:
  884. reg = readl(priv->base + RCC_MSSCKSELR);
  885. switch (reg & RCC_SELR_SRC_MASK) {
  886. case RCC_MSSCKSELR_HSI:
  887. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  888. break;
  889. case RCC_MSSCKSELR_HSE:
  890. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  891. break;
  892. case RCC_MSSCKSELR_CSI:
  893. clock = stm32mp1_clk_get_fixed(priv, _CSI);
  894. break;
  895. case RCC_MSSCKSELR_PLL:
  896. clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
  897. break;
  898. }
  899. /* MCU clock divider */
  900. reg = readl(priv->base + RCC_MCUDIVR);
  901. clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
  902. switch (p) {
  903. case _PCLK1:
  904. reg = readl(priv->base + RCC_APB1DIVR);
  905. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  906. break;
  907. case _PCLK2:
  908. reg = readl(priv->base + RCC_APB2DIVR);
  909. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  910. break;
  911. case _PCLK3:
  912. reg = readl(priv->base + RCC_APB3DIVR);
  913. clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
  914. break;
  915. case _CK_MCU:
  916. default:
  917. break;
  918. }
  919. break;
  920. case _CK_PER:
  921. reg = readl(priv->base + RCC_CPERCKSELR);
  922. switch (reg & RCC_SELR_SRC_MASK) {
  923. case RCC_CPERCKSELR_HSI:
  924. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  925. break;
  926. case RCC_CPERCKSELR_HSE:
  927. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  928. break;
  929. case RCC_CPERCKSELR_CSI:
  930. clock = stm32mp1_clk_get_fixed(priv, _CSI);
  931. break;
  932. }
  933. break;
  934. case _HSI:
  935. case _HSI_KER:
  936. clock = stm32mp1_clk_get_fixed(priv, _HSI);
  937. break;
  938. case _CSI:
  939. case _CSI_KER:
  940. clock = stm32mp1_clk_get_fixed(priv, _CSI);
  941. break;
  942. case _HSE:
  943. case _HSE_KER:
  944. case _HSE_KER_DIV2:
  945. clock = stm32mp1_clk_get_fixed(priv, _HSE);
  946. if (p == _HSE_KER_DIV2)
  947. clock >>= 1;
  948. break;
  949. case _LSI:
  950. clock = stm32mp1_clk_get_fixed(priv, _LSI);
  951. break;
  952. case _LSE:
  953. clock = stm32mp1_clk_get_fixed(priv, _LSE);
  954. break;
  955. /* PLL */
  956. case _PLL1_P:
  957. case _PLL1_Q:
  958. case _PLL1_R:
  959. clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
  960. break;
  961. case _PLL2_P:
  962. case _PLL2_Q:
  963. case _PLL2_R:
  964. clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
  965. break;
  966. case _PLL3_P:
  967. case _PLL3_Q:
  968. case _PLL3_R:
  969. clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
  970. break;
  971. case _PLL4_P:
  972. case _PLL4_Q:
  973. case _PLL4_R:
  974. clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
  975. break;
  976. /* other */
  977. case _USB_PHY_48:
  978. clock = 48000000;
  979. break;
  980. case _DSI_PHY:
  981. {
  982. struct clk clk;
  983. struct udevice *dev = NULL;
  984. if (!uclass_get_device_by_name(UCLASS_CLK, "ck_dsi_phy",
  985. &dev)) {
  986. if (clk_request(dev, &clk)) {
  987. pr_err("ck_dsi_phy request");
  988. } else {
  989. clk.id = 0;
  990. clock = clk_get_rate(&clk);
  991. }
  992. }
  993. break;
  994. }
  995. default:
  996. break;
  997. }
  998. debug("%s(%d) clock = %lx : %ld kHz\n",
  999. __func__, p, clock, clock / 1000);
  1000. return clock;
  1001. }
  1002. static int stm32mp1_clk_enable(struct clk *clk)
  1003. {
  1004. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  1005. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  1006. int i = stm32mp1_clk_get_id(priv, clk->id);
  1007. if (i < 0)
  1008. return i;
  1009. if (gate[i].set_clr)
  1010. writel(BIT(gate[i].bit), priv->base + gate[i].offset);
  1011. else
  1012. setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
  1013. debug("%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
  1014. return 0;
  1015. }
  1016. static int stm32mp1_clk_disable(struct clk *clk)
  1017. {
  1018. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  1019. const struct stm32mp1_clk_gate *gate = priv->data->gate;
  1020. int i = stm32mp1_clk_get_id(priv, clk->id);
  1021. if (i < 0)
  1022. return i;
  1023. if (gate[i].set_clr)
  1024. writel(BIT(gate[i].bit),
  1025. priv->base + gate[i].offset
  1026. + RCC_MP_ENCLRR_OFFSET);
  1027. else
  1028. clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
  1029. debug("%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
  1030. return 0;
  1031. }
  1032. static ulong stm32mp1_clk_get_rate(struct clk *clk)
  1033. {
  1034. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  1035. int p = stm32mp1_clk_get_parent(priv, clk->id);
  1036. ulong rate;
  1037. if (p < 0)
  1038. return 0;
  1039. rate = stm32mp1_clk_get(priv, p);
  1040. #ifdef DEBUG
  1041. debug("%s: computed rate for id clock %d is %d (parent is %s)\n",
  1042. __func__, (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
  1043. #endif
  1044. return rate;
  1045. }
  1046. #ifdef STM32MP1_CLOCK_TREE_INIT
  1047. static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
  1048. u32 mask_on)
  1049. {
  1050. u32 address = rcc + offset;
  1051. if (enable)
  1052. setbits_le32(address, mask_on);
  1053. else
  1054. clrbits_le32(address, mask_on);
  1055. }
  1056. static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
  1057. {
  1058. writel(mask_on, rcc + (enable ? RCC_OCENSETR : RCC_OCENCLRR));
  1059. }
  1060. static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
  1061. u32 mask_rdy)
  1062. {
  1063. u32 mask_test = 0;
  1064. u32 address = rcc + offset;
  1065. u32 val;
  1066. int ret;
  1067. if (enable)
  1068. mask_test = mask_rdy;
  1069. ret = readl_poll_timeout(address, val,
  1070. (val & mask_rdy) == mask_test,
  1071. TIMEOUT_1S);
  1072. if (ret)
  1073. pr_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
  1074. mask_rdy, address, enable, readl(address));
  1075. return ret;
  1076. }
  1077. static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
  1078. int lsedrv)
  1079. {
  1080. u32 value;
  1081. if (digbyp)
  1082. setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
  1083. if (bypass || digbyp)
  1084. setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
  1085. /*
  1086. * warning: not recommended to switch directly from "high drive"
  1087. * to "medium low drive", and vice-versa.
  1088. */
  1089. value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
  1090. >> RCC_BDCR_LSEDRV_SHIFT;
  1091. while (value != lsedrv) {
  1092. if (value > lsedrv)
  1093. value--;
  1094. else
  1095. value++;
  1096. clrsetbits_le32(rcc + RCC_BDCR,
  1097. RCC_BDCR_LSEDRV_MASK,
  1098. value << RCC_BDCR_LSEDRV_SHIFT);
  1099. }
  1100. stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
  1101. }
  1102. static void stm32mp1_lse_wait(fdt_addr_t rcc)
  1103. {
  1104. stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
  1105. }
  1106. static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
  1107. {
  1108. stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
  1109. stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
  1110. }
  1111. static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
  1112. {
  1113. if (digbyp)
  1114. writel(RCC_OCENR_DIGBYP, rcc + RCC_OCENSETR);
  1115. if (bypass || digbyp)
  1116. writel(RCC_OCENR_HSEBYP, rcc + RCC_OCENSETR);
  1117. stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
  1118. stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
  1119. if (css)
  1120. writel(RCC_OCENR_HSECSSON, rcc + RCC_OCENSETR);
  1121. }
  1122. static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
  1123. {
  1124. stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_CSION);
  1125. stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
  1126. }
  1127. static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
  1128. {
  1129. stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
  1130. stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
  1131. }
  1132. static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
  1133. {
  1134. u32 address = rcc + RCC_OCRDYR;
  1135. u32 val;
  1136. int ret;
  1137. clrsetbits_le32(rcc + RCC_HSICFGR,
  1138. RCC_HSICFGR_HSIDIV_MASK,
  1139. RCC_HSICFGR_HSIDIV_MASK & hsidiv);
  1140. ret = readl_poll_timeout(address, val,
  1141. val & RCC_OCRDYR_HSIDIVRDY,
  1142. TIMEOUT_200MS);
  1143. if (ret)
  1144. pr_err("HSIDIV failed @ 0x%x: 0x%x\n",
  1145. address, readl(address));
  1146. return ret;
  1147. }
  1148. static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
  1149. {
  1150. u8 hsidiv;
  1151. u32 hsidivfreq = MAX_HSI_HZ;
  1152. for (hsidiv = 0; hsidiv < 4; hsidiv++,
  1153. hsidivfreq = hsidivfreq / 2)
  1154. if (hsidivfreq == hsifreq)
  1155. break;
  1156. if (hsidiv == 4) {
  1157. pr_err("clk-hsi frequency invalid");
  1158. return -1;
  1159. }
  1160. if (hsidiv > 0)
  1161. return stm32mp1_set_hsidiv(rcc, hsidiv);
  1162. return 0;
  1163. }
  1164. static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
  1165. {
  1166. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1167. clrsetbits_le32(priv->base + pll[pll_id].pllxcr,
  1168. RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
  1169. RCC_PLLNCR_DIVREN,
  1170. RCC_PLLNCR_PLLON);
  1171. }
  1172. static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
  1173. {
  1174. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1175. u32 pllxcr = priv->base + pll[pll_id].pllxcr;
  1176. u32 val;
  1177. int ret;
  1178. ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
  1179. TIMEOUT_200MS);
  1180. if (ret) {
  1181. pr_err("PLL%d start failed @ 0x%x: 0x%x\n",
  1182. pll_id, pllxcr, readl(pllxcr));
  1183. return ret;
  1184. }
  1185. /* start the requested output */
  1186. setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
  1187. return 0;
  1188. }
  1189. static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
  1190. {
  1191. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1192. u32 pllxcr = priv->base + pll[pll_id].pllxcr;
  1193. u32 val;
  1194. /* stop all output */
  1195. clrbits_le32(pllxcr,
  1196. RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
  1197. /* stop PLL */
  1198. clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
  1199. /* wait PLL stopped */
  1200. return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
  1201. TIMEOUT_200MS);
  1202. }
  1203. static void pll_config_output(struct stm32mp1_clk_priv *priv,
  1204. int pll_id, u32 *pllcfg)
  1205. {
  1206. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1207. fdt_addr_t rcc = priv->base;
  1208. u32 value;
  1209. value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
  1210. & RCC_PLLNCFGR2_DIVP_MASK;
  1211. value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
  1212. & RCC_PLLNCFGR2_DIVQ_MASK;
  1213. value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
  1214. & RCC_PLLNCFGR2_DIVR_MASK;
  1215. writel(value, rcc + pll[pll_id].pllxcfgr2);
  1216. }
  1217. static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
  1218. u32 *pllcfg, u32 fracv)
  1219. {
  1220. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1221. fdt_addr_t rcc = priv->base;
  1222. enum stm32mp1_plltype type = pll[pll_id].plltype;
  1223. int src;
  1224. ulong refclk;
  1225. u8 ifrge = 0;
  1226. u32 value;
  1227. src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
  1228. refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
  1229. (pllcfg[PLLCFG_M] + 1);
  1230. if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
  1231. refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
  1232. debug("invalid refclk = %x\n", (u32)refclk);
  1233. return -EINVAL;
  1234. }
  1235. if (type == PLL_800 && refclk >= 8000000)
  1236. ifrge = 1;
  1237. value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
  1238. & RCC_PLLNCFGR1_DIVN_MASK;
  1239. value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
  1240. & RCC_PLLNCFGR1_DIVM_MASK;
  1241. value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
  1242. & RCC_PLLNCFGR1_IFRGE_MASK;
  1243. writel(value, rcc + pll[pll_id].pllxcfgr1);
  1244. /* fractional configuration: load sigma-delta modulator (SDM) */
  1245. /* Write into FRACV the new fractional value , and FRACLE to 0 */
  1246. writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
  1247. rcc + pll[pll_id].pllxfracr);
  1248. /* Write FRACLE to 1 : FRACV value is loaded into the SDM */
  1249. setbits_le32(rcc + pll[pll_id].pllxfracr,
  1250. RCC_PLLNFRACR_FRACLE);
  1251. pll_config_output(priv, pll_id, pllcfg);
  1252. return 0;
  1253. }
  1254. static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
  1255. {
  1256. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1257. u32 pllxcsg;
  1258. pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
  1259. RCC_PLLNCSGR_MOD_PER_MASK) |
  1260. ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
  1261. RCC_PLLNCSGR_INC_STEP_MASK) |
  1262. ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
  1263. RCC_PLLNCSGR_SSCG_MODE_MASK);
  1264. writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
  1265. setbits_le32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_SSCG_CTRL);
  1266. }
  1267. static __maybe_unused int pll_set_rate(struct udevice *dev,
  1268. int pll_id,
  1269. int div_id,
  1270. unsigned long clk_rate)
  1271. {
  1272. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1273. unsigned int pllcfg[PLLCFG_NB];
  1274. ofnode plloff;
  1275. char name[12];
  1276. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1277. enum stm32mp1_plltype type = pll[pll_id].plltype;
  1278. int divm, divn, divy;
  1279. int ret;
  1280. ulong fck_ref;
  1281. u32 fracv;
  1282. u64 value;
  1283. if (div_id > _DIV_NB)
  1284. return -EINVAL;
  1285. sprintf(name, "st,pll@%d", pll_id);
  1286. plloff = dev_read_subnode(dev, name);
  1287. if (!ofnode_valid(plloff))
  1288. return -FDT_ERR_NOTFOUND;
  1289. ret = ofnode_read_u32_array(plloff, "cfg",
  1290. pllcfg, PLLCFG_NB);
  1291. if (ret < 0)
  1292. return -FDT_ERR_NOTFOUND;
  1293. fck_ref = pll_get_fref_ck(priv, pll_id);
  1294. divm = pllcfg[PLLCFG_M];
  1295. /* select output divider = 0: for _DIV_P, 1:_DIV_Q 2:_DIV_R */
  1296. divy = pllcfg[PLLCFG_P + div_id];
  1297. /* For: PLL1 & PLL2 => VCO is * 2 but ck_pll_y is also / 2
  1298. * So same final result than PLL2 et 4
  1299. * with FRACV
  1300. * Fck_pll_y = Fck_ref * ((DIVN + 1) + FRACV / 2^13)
  1301. * / (DIVy + 1) * (DIVM + 1)
  1302. * value = (DIVN + 1) * 2^13 + FRACV / 2^13
  1303. * = Fck_pll_y (DIVy + 1) * (DIVM + 1) * 2^13 / Fck_ref
  1304. */
  1305. value = ((u64)clk_rate * (divy + 1) * (divm + 1)) << 13;
  1306. value = lldiv(value, fck_ref);
  1307. divn = (value >> 13) - 1;
  1308. if (divn < DIVN_MIN ||
  1309. divn > stm32mp1_pll[type].divn_max) {
  1310. pr_err("divn invalid = %d", divn);
  1311. return -EINVAL;
  1312. }
  1313. fracv = value - ((divn + 1) << 13);
  1314. pllcfg[PLLCFG_N] = divn;
  1315. /* reconfigure PLL */
  1316. pll_stop(priv, pll_id);
  1317. pll_config(priv, pll_id, pllcfg, fracv);
  1318. pll_start(priv, pll_id);
  1319. pll_output(priv, pll_id, pllcfg[PLLCFG_O]);
  1320. return 0;
  1321. }
  1322. static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
  1323. {
  1324. u32 address = priv->base + (clksrc >> 4);
  1325. u32 val;
  1326. int ret;
  1327. clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
  1328. ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
  1329. TIMEOUT_200MS);
  1330. if (ret)
  1331. pr_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
  1332. clksrc, address, readl(address));
  1333. return ret;
  1334. }
  1335. static void stgen_config(struct stm32mp1_clk_priv *priv)
  1336. {
  1337. int p;
  1338. u32 stgenc, cntfid0;
  1339. ulong rate;
  1340. stgenc = STM32_STGEN_BASE;
  1341. cntfid0 = readl(stgenc + STGENC_CNTFID0);
  1342. p = stm32mp1_clk_get_parent(priv, STGEN_K);
  1343. rate = stm32mp1_clk_get(priv, p);
  1344. if (cntfid0 != rate) {
  1345. u64 counter;
  1346. pr_debug("System Generic Counter (STGEN) update\n");
  1347. clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
  1348. counter = (u64)readl(stgenc + STGENC_CNTCVL);
  1349. counter |= ((u64)(readl(stgenc + STGENC_CNTCVU))) << 32;
  1350. counter = lldiv(counter * (u64)rate, cntfid0);
  1351. writel((u32)counter, stgenc + STGENC_CNTCVL);
  1352. writel((u32)(counter >> 32), stgenc + STGENC_CNTCVU);
  1353. writel(rate, stgenc + STGENC_CNTFID0);
  1354. setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
  1355. __asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
  1356. /* need to update gd->arch.timer_rate_hz with new frequency */
  1357. timer_init();
  1358. }
  1359. }
  1360. static int set_clkdiv(unsigned int clkdiv, u32 address)
  1361. {
  1362. u32 val;
  1363. int ret;
  1364. clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
  1365. ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
  1366. TIMEOUT_200MS);
  1367. if (ret)
  1368. pr_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
  1369. clkdiv, address, readl(address));
  1370. return ret;
  1371. }
  1372. static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
  1373. u32 clksrc, u32 clkdiv)
  1374. {
  1375. u32 address = priv->base + (clksrc >> 4);
  1376. /*
  1377. * binding clksrc : bit15-4 offset
  1378. * bit3: disable
  1379. * bit2-0: MCOSEL[2:0]
  1380. */
  1381. if (clksrc & 0x8) {
  1382. clrbits_le32(address, RCC_MCOCFG_MCOON);
  1383. } else {
  1384. clrsetbits_le32(address,
  1385. RCC_MCOCFG_MCOSRC_MASK,
  1386. clksrc & RCC_MCOCFG_MCOSRC_MASK);
  1387. clrsetbits_le32(address,
  1388. RCC_MCOCFG_MCODIV_MASK,
  1389. clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
  1390. setbits_le32(address, RCC_MCOCFG_MCOON);
  1391. }
  1392. }
  1393. static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
  1394. unsigned int clksrc,
  1395. int lse_css)
  1396. {
  1397. u32 address = priv->base + RCC_BDCR;
  1398. if (readl(address) & RCC_BDCR_RTCCKEN)
  1399. goto skip_rtc;
  1400. if (clksrc == CLK_RTC_DISABLED)
  1401. goto skip_rtc;
  1402. clrsetbits_le32(address,
  1403. RCC_BDCR_RTCSRC_MASK,
  1404. clksrc << RCC_BDCR_RTCSRC_SHIFT);
  1405. setbits_le32(address, RCC_BDCR_RTCCKEN);
  1406. skip_rtc:
  1407. if (lse_css)
  1408. setbits_le32(address, RCC_BDCR_LSECSSON);
  1409. }
  1410. static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
  1411. {
  1412. u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
  1413. u32 value = pkcs & 0xF;
  1414. u32 mask = 0xF;
  1415. if (pkcs & BIT(31)) {
  1416. mask <<= 4;
  1417. value <<= 4;
  1418. }
  1419. clrsetbits_le32(address, mask, value);
  1420. }
  1421. static int stm32mp1_clktree(struct udevice *dev)
  1422. {
  1423. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1424. fdt_addr_t rcc = priv->base;
  1425. unsigned int clksrc[CLKSRC_NB];
  1426. unsigned int clkdiv[CLKDIV_NB];
  1427. unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
  1428. ofnode plloff[_PLL_NB];
  1429. int ret;
  1430. int i, len;
  1431. int lse_css = 0;
  1432. const u32 *pkcs_cell;
  1433. /* check mandatory field */
  1434. ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
  1435. if (ret < 0) {
  1436. debug("field st,clksrc invalid: error %d\n", ret);
  1437. return -FDT_ERR_NOTFOUND;
  1438. }
  1439. ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
  1440. if (ret < 0) {
  1441. debug("field st,clkdiv invalid: error %d\n", ret);
  1442. return -FDT_ERR_NOTFOUND;
  1443. }
  1444. /* check mandatory field in each pll */
  1445. for (i = 0; i < _PLL_NB; i++) {
  1446. char name[12];
  1447. sprintf(name, "st,pll@%d", i);
  1448. plloff[i] = dev_read_subnode(dev, name);
  1449. if (!ofnode_valid(plloff[i]))
  1450. continue;
  1451. ret = ofnode_read_u32_array(plloff[i], "cfg",
  1452. pllcfg[i], PLLCFG_NB);
  1453. if (ret < 0) {
  1454. debug("field cfg invalid: error %d\n", ret);
  1455. return -FDT_ERR_NOTFOUND;
  1456. }
  1457. }
  1458. debug("configuration MCO\n");
  1459. stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
  1460. stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
  1461. debug("switch ON osillator\n");
  1462. /*
  1463. * switch ON oscillator found in device-tree,
  1464. * HSI already ON after bootrom
  1465. */
  1466. if (priv->osc[_LSI])
  1467. stm32mp1_lsi_set(rcc, 1);
  1468. if (priv->osc[_LSE]) {
  1469. int bypass, digbyp, lsedrv;
  1470. struct udevice *dev = priv->osc_dev[_LSE];
  1471. bypass = dev_read_bool(dev, "st,bypass");
  1472. digbyp = dev_read_bool(dev, "st,digbypass");
  1473. lse_css = dev_read_bool(dev, "st,css");
  1474. lsedrv = dev_read_u32_default(dev, "st,drive",
  1475. LSEDRV_MEDIUM_HIGH);
  1476. stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
  1477. }
  1478. if (priv->osc[_HSE]) {
  1479. int bypass, digbyp, css;
  1480. struct udevice *dev = priv->osc_dev[_HSE];
  1481. bypass = dev_read_bool(dev, "st,bypass");
  1482. digbyp = dev_read_bool(dev, "st,digbypass");
  1483. css = dev_read_bool(dev, "st,css");
  1484. stm32mp1_hse_enable(rcc, bypass, digbyp, css);
  1485. }
  1486. /* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
  1487. * => switch on CSI even if node is not present in device tree
  1488. */
  1489. stm32mp1_csi_set(rcc, 1);
  1490. /* come back to HSI */
  1491. debug("come back to HSI\n");
  1492. set_clksrc(priv, CLK_MPU_HSI);
  1493. set_clksrc(priv, CLK_AXI_HSI);
  1494. set_clksrc(priv, CLK_MCU_HSI);
  1495. debug("pll stop\n");
  1496. for (i = 0; i < _PLL_NB; i++)
  1497. pll_stop(priv, i);
  1498. /* configure HSIDIV */
  1499. debug("configure HSIDIV\n");
  1500. if (priv->osc[_HSI]) {
  1501. stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
  1502. stgen_config(priv);
  1503. }
  1504. /* select DIV */
  1505. debug("select DIV\n");
  1506. /* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
  1507. writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
  1508. set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
  1509. set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
  1510. set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
  1511. set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
  1512. set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
  1513. set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
  1514. set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
  1515. /* no ready bit for RTC */
  1516. writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
  1517. /* configure PLLs source */
  1518. debug("configure PLLs source\n");
  1519. set_clksrc(priv, clksrc[CLKSRC_PLL12]);
  1520. set_clksrc(priv, clksrc[CLKSRC_PLL3]);
  1521. set_clksrc(priv, clksrc[CLKSRC_PLL4]);
  1522. /* configure and start PLLs */
  1523. debug("configure PLLs\n");
  1524. for (i = 0; i < _PLL_NB; i++) {
  1525. u32 fracv;
  1526. u32 csg[PLLCSG_NB];
  1527. debug("configure PLL %d @ %d\n", i,
  1528. ofnode_to_offset(plloff[i]));
  1529. if (!ofnode_valid(plloff[i]))
  1530. continue;
  1531. fracv = ofnode_read_u32_default(plloff[i], "frac", 0);
  1532. pll_config(priv, i, pllcfg[i], fracv);
  1533. ret = ofnode_read_u32_array(plloff[i], "csg", csg, PLLCSG_NB);
  1534. if (!ret) {
  1535. pll_csg(priv, i, csg);
  1536. } else if (ret != -FDT_ERR_NOTFOUND) {
  1537. debug("invalid csg node for pll@%d res=%d\n", i, ret);
  1538. return ret;
  1539. }
  1540. pll_start(priv, i);
  1541. }
  1542. /* wait and start PLLs ouptut when ready */
  1543. for (i = 0; i < _PLL_NB; i++) {
  1544. if (!ofnode_valid(plloff[i]))
  1545. continue;
  1546. debug("output PLL %d\n", i);
  1547. pll_output(priv, i, pllcfg[i][PLLCFG_O]);
  1548. }
  1549. /* wait LSE ready before to use it */
  1550. if (priv->osc[_LSE])
  1551. stm32mp1_lse_wait(rcc);
  1552. /* configure with expected clock source */
  1553. debug("CLKSRC\n");
  1554. set_clksrc(priv, clksrc[CLKSRC_MPU]);
  1555. set_clksrc(priv, clksrc[CLKSRC_AXI]);
  1556. set_clksrc(priv, clksrc[CLKSRC_MCU]);
  1557. set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
  1558. /* configure PKCK */
  1559. debug("PKCK\n");
  1560. pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
  1561. if (pkcs_cell) {
  1562. bool ckper_disabled = false;
  1563. for (i = 0; i < len / sizeof(u32); i++) {
  1564. u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
  1565. if (pkcs == CLK_CKPER_DISABLED) {
  1566. ckper_disabled = true;
  1567. continue;
  1568. }
  1569. pkcs_config(priv, pkcs);
  1570. }
  1571. /* CKPER is source for some peripheral clock
  1572. * (FMC-NAND / QPSI-NOR) and switching source is allowed
  1573. * only if previous clock is still ON
  1574. * => deactivated CKPER only after switching clock
  1575. */
  1576. if (ckper_disabled)
  1577. pkcs_config(priv, CLK_CKPER_DISABLED);
  1578. }
  1579. /* STGEN clock source can change with CLK_STGEN_XXX */
  1580. stgen_config(priv);
  1581. debug("oscillator off\n");
  1582. /* switch OFF HSI if not found in device-tree */
  1583. if (!priv->osc[_HSI])
  1584. stm32mp1_hsi_set(rcc, 0);
  1585. /* Software Self-Refresh mode (SSR) during DDR initilialization */
  1586. clrsetbits_le32(priv->base + RCC_DDRITFCR,
  1587. RCC_DDRITFCR_DDRCKMOD_MASK,
  1588. RCC_DDRITFCR_DDRCKMOD_SSR <<
  1589. RCC_DDRITFCR_DDRCKMOD_SHIFT);
  1590. return 0;
  1591. }
  1592. #endif /* STM32MP1_CLOCK_TREE_INIT */
  1593. static int pll_set_output_rate(struct udevice *dev,
  1594. int pll_id,
  1595. int div_id,
  1596. unsigned long clk_rate)
  1597. {
  1598. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1599. const struct stm32mp1_clk_pll *pll = priv->data->pll;
  1600. u32 pllxcr = priv->base + pll[pll_id].pllxcr;
  1601. int div;
  1602. ulong fvco;
  1603. if (div_id > _DIV_NB)
  1604. return -EINVAL;
  1605. fvco = pll_get_fvco(priv, pll_id);
  1606. if (fvco <= clk_rate)
  1607. div = 1;
  1608. else
  1609. div = DIV_ROUND_UP(fvco, clk_rate);
  1610. if (div > 128)
  1611. div = 128;
  1612. /* stop the requested output */
  1613. clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
  1614. /* change divider */
  1615. clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
  1616. RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
  1617. (div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
  1618. /* start the requested output */
  1619. setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
  1620. return 0;
  1621. }
  1622. static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
  1623. {
  1624. struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
  1625. int p;
  1626. switch (clk->id) {
  1627. #if defined(STM32MP1_CLOCK_TREE_INIT) && \
  1628. defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
  1629. case DDRPHYC:
  1630. break;
  1631. #endif
  1632. case LTDC_PX:
  1633. case DSI_PX:
  1634. break;
  1635. default:
  1636. pr_err("not supported");
  1637. return -EINVAL;
  1638. }
  1639. p = stm32mp1_clk_get_parent(priv, clk->id);
  1640. #ifdef DEBUG
  1641. debug("%s: parent = %d:%s\n", __func__, p, stm32mp1_clk_parent_name[p]);
  1642. #endif
  1643. if (p < 0)
  1644. return -EINVAL;
  1645. switch (p) {
  1646. #if defined(STM32MP1_CLOCK_TREE_INIT) && \
  1647. defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
  1648. case _PLL2_R: /* DDRPHYC */
  1649. {
  1650. /* only for change DDR clock in interactive mode */
  1651. ulong result;
  1652. set_clksrc(priv, CLK_AXI_HSI);
  1653. result = pll_set_rate(clk->dev, _PLL2, _DIV_R, clk_rate);
  1654. set_clksrc(priv, CLK_AXI_PLL2P);
  1655. return result;
  1656. }
  1657. #endif
  1658. case _PLL4_Q:
  1659. /* for LTDC_PX and DSI_PX case */
  1660. return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
  1661. }
  1662. return -EINVAL;
  1663. }
  1664. static void stm32mp1_osc_clk_init(const char *name,
  1665. struct stm32mp1_clk_priv *priv,
  1666. int index)
  1667. {
  1668. struct clk clk;
  1669. struct udevice *dev = NULL;
  1670. priv->osc[index] = 0;
  1671. clk.id = 0;
  1672. if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
  1673. if (clk_request(dev, &clk))
  1674. pr_err("%s request", name);
  1675. else
  1676. priv->osc[index] = clk_get_rate(&clk);
  1677. }
  1678. priv->osc_dev[index] = dev;
  1679. }
  1680. static void stm32mp1_osc_init(struct udevice *dev)
  1681. {
  1682. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1683. int i;
  1684. const char *name[NB_OSC] = {
  1685. [_LSI] = "clk-lsi",
  1686. [_LSE] = "clk-lse",
  1687. [_HSI] = "clk-hsi",
  1688. [_HSE] = "clk-hse",
  1689. [_CSI] = "clk-csi",
  1690. [_I2S_CKIN] = "i2s_ckin",
  1691. };
  1692. for (i = 0; i < NB_OSC; i++) {
  1693. stm32mp1_osc_clk_init(name[i], priv, i);
  1694. debug("%d: %s => %x\n", i, name[i], (u32)priv->osc[i]);
  1695. }
  1696. }
  1697. static void __maybe_unused stm32mp1_clk_dump(struct stm32mp1_clk_priv *priv)
  1698. {
  1699. char buf[32];
  1700. int i, s, p;
  1701. printf("Clocks:\n");
  1702. for (i = 0; i < _PARENT_NB; i++) {
  1703. printf("- %s : %s MHz\n",
  1704. stm32mp1_clk_parent_name[i],
  1705. strmhz(buf, stm32mp1_clk_get(priv, i)));
  1706. }
  1707. printf("Source Clocks:\n");
  1708. for (i = 0; i < _PARENT_SEL_NB; i++) {
  1709. p = (readl(priv->base + priv->data->sel[i].offset) >>
  1710. priv->data->sel[i].src) & priv->data->sel[i].msk;
  1711. if (p < priv->data->sel[i].nb_parent) {
  1712. s = priv->data->sel[i].parent[p];
  1713. printf("- %s(%d) => parent %s(%d)\n",
  1714. stm32mp1_clk_parent_sel_name[i], i,
  1715. stm32mp1_clk_parent_name[s], s);
  1716. } else {
  1717. printf("- %s(%d) => parent index %d is invalid\n",
  1718. stm32mp1_clk_parent_sel_name[i], i, p);
  1719. }
  1720. }
  1721. }
  1722. #ifdef CONFIG_CMD_CLK
  1723. int soc_clk_dump(void)
  1724. {
  1725. struct udevice *dev;
  1726. struct stm32mp1_clk_priv *priv;
  1727. int ret;
  1728. ret = uclass_get_device_by_driver(UCLASS_CLK,
  1729. DM_GET_DRIVER(stm32mp1_clock),
  1730. &dev);
  1731. if (ret)
  1732. return ret;
  1733. priv = dev_get_priv(dev);
  1734. stm32mp1_clk_dump(priv);
  1735. return 0;
  1736. }
  1737. #endif
  1738. static int stm32mp1_clk_probe(struct udevice *dev)
  1739. {
  1740. int result = 0;
  1741. struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
  1742. priv->base = dev_read_addr(dev->parent);
  1743. if (priv->base == FDT_ADDR_T_NONE)
  1744. return -EINVAL;
  1745. priv->data = (void *)&stm32mp1_data;
  1746. if (!priv->data->gate || !priv->data->sel ||
  1747. !priv->data->pll)
  1748. return -EINVAL;
  1749. stm32mp1_osc_init(dev);
  1750. #ifdef STM32MP1_CLOCK_TREE_INIT
  1751. /* clock tree init is done only one time, before relocation */
  1752. if (!(gd->flags & GD_FLG_RELOC))
  1753. result = stm32mp1_clktree(dev);
  1754. #endif
  1755. #ifndef CONFIG_SPL_BUILD
  1756. #if defined(DEBUG)
  1757. /* display debug information for probe after relocation */
  1758. if (gd->flags & GD_FLG_RELOC)
  1759. stm32mp1_clk_dump(priv);
  1760. #endif
  1761. gd->cpu_clk = stm32mp1_clk_get(priv, _CK_MPU);
  1762. gd->bus_clk = stm32mp1_clk_get(priv, _ACLK);
  1763. /* DDRPHYC father */
  1764. gd->mem_clk = stm32mp1_clk_get(priv, _PLL2_R);
  1765. #if defined(CONFIG_DISPLAY_CPUINFO)
  1766. if (gd->flags & GD_FLG_RELOC) {
  1767. char buf[32];
  1768. printf("Clocks:\n");
  1769. printf("- MPU : %s MHz\n", strmhz(buf, gd->cpu_clk));
  1770. printf("- MCU : %s MHz\n",
  1771. strmhz(buf, stm32mp1_clk_get(priv, _CK_MCU)));
  1772. printf("- AXI : %s MHz\n", strmhz(buf, gd->bus_clk));
  1773. printf("- PER : %s MHz\n",
  1774. strmhz(buf, stm32mp1_clk_get(priv, _CK_PER)));
  1775. printf("- DDR : %s MHz\n", strmhz(buf, gd->mem_clk));
  1776. }
  1777. #endif /* CONFIG_DISPLAY_CPUINFO */
  1778. #endif
  1779. return result;
  1780. }
  1781. static const struct clk_ops stm32mp1_clk_ops = {
  1782. .enable = stm32mp1_clk_enable,
  1783. .disable = stm32mp1_clk_disable,
  1784. .get_rate = stm32mp1_clk_get_rate,
  1785. .set_rate = stm32mp1_clk_set_rate,
  1786. };
  1787. U_BOOT_DRIVER(stm32mp1_clock) = {
  1788. .name = "stm32mp1_clk",
  1789. .id = UCLASS_CLK,
  1790. .ops = &stm32mp1_clk_ops,
  1791. .priv_auto_alloc_size = sizeof(struct stm32mp1_clk_priv),
  1792. .probe = stm32mp1_clk_probe,
  1793. };