Selaa lähdekoodia

Merge tag 'u-boot-stm32-20190723' of https://gitlab.denx.de/u-boot/custodians/u-boot-stm

- add rtc driver for stm32mp1
- add remoteproc driver for stm32mp1
- use kernel qspi compatible string for stm32
Tom Rini 4 vuotta sitten
vanhempi
commit
ff8c23e784

+ 1 - 0
MAINTAINERS

@@ -311,6 +311,7 @@ F:	drivers/power/pmic/stpmic1.c
 F:	drivers/power/regulator/stm32-vrefbuf.c
 F:	drivers/power/regulator/stpmic1.c
 F:	drivers/ram/stm32mp1/
+F:	drivers/remoteproc/stm32_copro.c
 F:	drivers/misc/stm32_rcc.c
 F:	drivers/reset/stm32-reset.c
 F:	drivers/spi/stm32_qspi.c

+ 1 - 1
arch/arm/dts/stm32f469-disco-u-boot.dtsi

@@ -67,7 +67,7 @@
 		};
 
 		qspi: quadspi@A0001000 {
-			compatible = "st,stm32-qspi";
+			compatible = "st,stm32f469-qspi";
 			#address-cells = <1>;
 			#size-cells = <0>;
 			reg = <0xA0001000 0x1000>, <0x90000000 0x10000000>;

+ 1 - 1
arch/arm/dts/stm32f7-u-boot.dtsi

@@ -44,7 +44,7 @@
 		};
 
 		qspi: quadspi@A0001000 {
-			compatible = "st,stm32-qspi";
+			compatible = "st,stm32f469-qspi";
 			#address-cells = <1>;
 			#size-cells = <0>;
 			reg = <0xA0001000 0x1000>, <0x90000000 0x10000000>;

+ 4 - 0
arch/sandbox/dts/test.dts

@@ -756,6 +756,10 @@
 			  3 0x300 0xB000 0x1000
 			 >;
 
+		dma-ranges = <0 0x000 0x10000000 0x1000
+			      1 0x100 0x20000000 0x1000
+			     >;
+
 		dev@0,0 {
 			compatible = "denx,u-boot-fdt-dummy";
 			reg = <0 0x0 0x1000>;

+ 6 - 0
common/fdt_support.c

@@ -1292,6 +1292,12 @@ u64 fdt_translate_address(const void *blob, int node_offset,
 	return __of_translate_address(blob, node_offset, in_addr, "ranges");
 }
 
+u64 fdt_translate_dma_address(const void *blob, int node_offset,
+			      const fdt32_t *in_addr)
+{
+	return __of_translate_address(blob, node_offset, in_addr, "dma-ranges");
+}
+
 /**
  * fdt_node_offset_by_compat_reg: Find a node that matches compatiable and
  * who's reg property matches a physical cpu address

+ 3 - 0
configs/stm32mp15_basic_defconfig

@@ -101,6 +101,9 @@ CONFIG_DM_REGULATOR_FIXED=y
 CONFIG_DM_REGULATOR_GPIO=y
 CONFIG_DM_REGULATOR_STM32_VREFBUF=y
 CONFIG_DM_REGULATOR_STPMIC1=y
+CONFIG_REMOTEPROC_STM32_COPRO=y
+CONFIG_DM_RTC=y
+CONFIG_RTC_STM32=y
 CONFIG_SERIAL_RX_BUFFER=y
 CONFIG_STM32_SERIAL=y
 CONFIG_SPI=y

+ 3 - 0
configs/stm32mp15_optee_defconfig

@@ -88,6 +88,9 @@ CONFIG_DM_REGULATOR_FIXED=y
 CONFIG_DM_REGULATOR_GPIO=y
 CONFIG_DM_REGULATOR_STM32_VREFBUF=y
 CONFIG_DM_REGULATOR_STPMIC1=y
+CONFIG_REMOTEPROC_STM32_COPRO=y
+CONFIG_DM_RTC=y
+CONFIG_RTC_STM32=y
 CONFIG_SERIAL_RX_BUFFER=y
 CONFIG_STM32_SERIAL=y
 CONFIG_SPI=y

+ 3 - 0
configs/stm32mp15_trusted_defconfig

@@ -87,6 +87,9 @@ CONFIG_DM_REGULATOR_FIXED=y
 CONFIG_DM_REGULATOR_GPIO=y
 CONFIG_DM_REGULATOR_STM32_VREFBUF=y
 CONFIG_DM_REGULATOR_STPMIC1=y
+CONFIG_REMOTEPROC_STM32_COPRO=y
+CONFIG_DM_RTC=y
+CONFIG_RTC_STM32=y
 CONFIG_SERIAL_RX_BUFFER=y
 CONFIG_STM32_SERIAL=y
 CONFIG_SPI=y

+ 38 - 33
doc/device-tree-bindings/spi/spi-stm32-qspi.txt

@@ -1,39 +1,44 @@
-STM32 QSPI controller device tree bindings
---------------------------------------------
+* STMicroelectronics Quad Serial Peripheral Interface(QSPI)
 
 Required properties:
-- compatible		: should be "st,stm32-qspi".
-- reg			: 1. Physical base address and size of SPI registers map.
-			  2. Physical base address & size of mapped NOR Flash.
-- spi-max-frequency	: Max supported spi frequency.
-- status		: enable in requried dts.
-
-Connected flash properties
---------------------------
-- spi-max-frequency	: Max supported spi frequency.
-- spi-tx-bus-width	: Bus width (number of lines) for writing (1-4)
-- spi-rx-bus-width	: Bus width (number of lines) for reading (1-4)
-- memory-map		: Address and size for memory-mapping the flash
+- compatible: should be "st,stm32f469-qspi"
+- reg: the first contains the register location and length.
+       the second contains the memory mapping address and length
+- reg-names: should contain the reg names "qspi" "qspi_mm"
+- interrupts: should contain the interrupt for the device
+- clocks: the phandle of the clock needed by the QSPI controller
+- A pinctrl must be defined to set pins in mode of operation for QSPI transfer
+
+Optional properties:
+- resets: must contain the phandle to the reset controller.
+
+A spi flash (NOR/NAND) must be a child of spi node and could have some
+properties. Also see jedec,spi-nor.txt.
+
+Required properties:
+- reg: chip-Select number (QSPI controller may connect 2 flashes)
+- spi-max-frequency: max frequency of spi bus
+
+Optional property:
+- spi-rx-bus-width: see ./spi-bus.txt for the description
 
 Example:
-	qspi: quadspi@A0001000 {
-		compatible = "st,stm32-qspi";
-		#address-cells = <1>;
-		#size-cells = <0>;
-		reg = <0xA0001000 0x1000>, <0x90000000 0x10000000>;
-		reg-names = "QuadSPI", "QuadSPI-memory";
-		interrupts = <92>;
+
+qspi: spi@a0001000 {
+	compatible = "st,stm32f469-qspi";
+	reg = <0xa0001000 0x1000>, <0x90000000 0x10000000>;
+	reg-names = "qspi", "qspi_mm";
+	interrupts = <91>;
+	resets = <&rcc STM32F4_AHB3_RESET(QSPI)>;
+	clocks = <&rcc 0 STM32F4_AHB3_CLOCK(QSPI)>;
+	pinctrl-names = "default";
+	pinctrl-0 = <&pinctrl_qspi0>;
+
+	flash@0 {
+		compatible = "jedec,spi-nor";
+		reg = <0>;
+		spi-rx-bus-width = <4>;
 		spi-max-frequency = <108000000>;
-		status = "okay";
-
-		qflash0: n25q128a {
-			#address-cells = <1>;
-			#size-cells = <1>;
-			compatible = "micron,n25q128a13", "jedec,spi-nor";
-			spi-max-frequency = <108000000>;
-			spi-tx-bus-width = <4>;
-			spi-rx-bus-width = <4>;
-			memory-map = <0x90000000 0x1000000>;
-			reg = <0>;
-		};
+		...
 	};
+};

+ 9 - 0
drivers/clk/clk_stm32mp1.c

@@ -300,6 +300,7 @@ enum stm32mp1_parent_sel {
 	_DSI_SEL,
 	_ADC12_SEL,
 	_SPI1_SEL,
+	_RTC_SEL,
 	_PARENT_SEL_NB,
 	_UNKNOWN_SEL = 0xff,
 };
@@ -534,6 +535,7 @@ static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
 
 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
+	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
 
 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
@@ -569,6 +571,8 @@ static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
 
 	STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
+
+	STM32MP1_CLK(RCC_BDCR, 20, RTC, _RTC_SEL),
 };
 
 static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
@@ -594,6 +598,7 @@ static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
 static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
 static const u8 spi_parents[] = {_PLL4_P, _PLL3_Q, _I2S_CKIN, _CK_PER,
 				 _PLL3_R};
+static const u8 rtc_parents[] = {_UNKNOWN_ID, _LSE, _LSI, _HSE};
 
 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
 	STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
@@ -619,6 +624,9 @@ static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
 	STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
 	STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x1, adc_parents),
 	STM32MP1_CLK_PARENT(_SPI1_SEL, RCC_SPI2S1CKSELR, 0, 0x7, spi_parents),
+	STM32MP1_CLK_PARENT(_RTC_SEL, RCC_BDCR, RCC_BDCR_RTCSRC_SHIFT,
+			    (RCC_BDCR_RTCSRC_MASK >> RCC_BDCR_RTCSRC_SHIFT),
+			    rtc_parents),
 };
 
 #ifdef STM32MP1_CLOCK_TREE_INIT
@@ -734,6 +742,7 @@ char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
 	[_DSI_SEL] = "DSI",
 	[_ADC12_SEL] = "ADC12",
 	[_SPI1_SEL] = "SPI1",
+	[_RTC_SEL] = "RTC",
 };
 
 static const struct stm32mp1_clk_data stm32mp1_data = {

+ 4 - 0
drivers/core/of_addr.c

@@ -318,6 +318,10 @@ u64 of_translate_address(const struct device_node *dev, const __be32 *in_addr)
 	return __of_translate_address(dev, in_addr, "ranges");
 }
 
+u64 of_translate_dma_address(const struct device_node *dev, const __be32 *in_addr)
+{
+	return __of_translate_address(dev, in_addr, "dma-ranges");
+}
 
 static int __of_address_to_resource(const struct device_node *dev,
 		const __be32 *addrp, u64 size, unsigned int flags,

+ 8 - 0
drivers/core/ofnode.c

@@ -770,6 +770,14 @@ u64 ofnode_translate_address(ofnode node, const fdt32_t *in_addr)
 		return fdt_translate_address(gd->fdt_blob, ofnode_to_offset(node), in_addr);
 }
 
+u64 ofnode_translate_dma_address(ofnode node, const fdt32_t *in_addr)
+{
+	if (ofnode_is_np(node))
+		return of_translate_dma_address(ofnode_to_np(node), in_addr);
+	else
+		return fdt_translate_dma_address(gd->fdt_blob, ofnode_to_offset(node), in_addr);
+}
+
 int ofnode_device_is_compatible(ofnode node, const char *compat)
 {
 	if (ofnode_is_np(node))

+ 5 - 0
drivers/core/read.c

@@ -265,6 +265,11 @@ u64 dev_translate_address(struct udevice *dev, const fdt32_t *in_addr)
 	return ofnode_translate_address(dev_ofnode(dev), in_addr);
 }
 
+u64 dev_translate_dma_address(struct udevice *dev, const fdt32_t *in_addr)
+{
+	return ofnode_translate_dma_address(dev_ofnode(dev), in_addr);
+}
+
 int dev_read_alias_highest_id(const char *stem)
 {
 	if (of_live_active())

+ 10 - 0
drivers/remoteproc/Kconfig

@@ -40,6 +40,16 @@ config REMOTEPROC_SANDBOX
 	  Say 'y' here to add support for test processor which does dummy
 	  operations for sandbox platform.
 
+config REMOTEPROC_STM32_COPRO
+	bool "Support for STM32 coprocessor"
+	select REMOTEPROC
+	depends on DM
+	depends on ARCH_STM32MP
+	depends on OF_CONTROL
+	help
+	  Say 'y' here to add support for STM32 Cortex-M4 coprocessors via the
+	  remoteproc framework.
+
 config REMOTEPROC_TI_POWER
 	bool "Support for TI Power processor"
 	select REMOTEPROC

+ 2 - 1
drivers/remoteproc/Makefile

@@ -4,10 +4,11 @@
 # Texas Instruments Incorporated - http://www.ti.com/
 #
 
-obj-$(CONFIG_$(SPL_)REMOTEPROC) += rproc-uclass.o
+obj-$(CONFIG_$(SPL_)REMOTEPROC) += rproc-uclass.o rproc-elf-loader.o
 
 # Remote proc drivers - Please keep this list alphabetically sorted.
 obj-$(CONFIG_K3_SYSTEM_CONTROLLER) += k3_system_controller.o
 obj-$(CONFIG_REMOTEPROC_K3) += k3_rproc.o
 obj-$(CONFIG_REMOTEPROC_SANDBOX) += sandbox_testproc.o
+obj-$(CONFIG_REMOTEPROC_STM32_COPRO) += stm32_copro.o
 obj-$(CONFIG_REMOTEPROC_TI_POWER) += ti_power_proc.o

+ 106 - 0
drivers/remoteproc/rproc-elf-loader.c

@@ -0,0 +1,106 @@
+// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+/*
+ * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
+ */
+#include <common.h>
+#include <dm.h>
+#include <elf.h>
+#include <remoteproc.h>
+
+/* Basic function to verify ELF32 image format */
+int rproc_elf32_sanity_check(ulong addr, ulong size)
+{
+	Elf32_Ehdr *ehdr;
+	char class;
+
+	if (!addr) {
+		pr_debug("Invalid fw address?\n");
+		return -EFAULT;
+	}
+
+	if (size < sizeof(Elf32_Ehdr)) {
+		pr_debug("Image is too small\n");
+		return -ENOSPC;
+	}
+
+	ehdr = (Elf32_Ehdr *)addr;
+	class = ehdr->e_ident[EI_CLASS];
+
+	if (!IS_ELF(*ehdr) || ehdr->e_type != ET_EXEC || class != ELFCLASS32) {
+		pr_debug("Not an executable ELF32 image\n");
+		return -EPROTONOSUPPORT;
+	}
+
+	/* We assume the firmware has the same endianness as the host */
+# ifdef __LITTLE_ENDIAN
+	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
+# else /* BIG ENDIAN */
+	if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
+# endif
+		pr_debug("Unsupported firmware endianness\n");
+		return -EILSEQ;
+	}
+
+	if (size < ehdr->e_shoff + sizeof(Elf32_Shdr)) {
+		pr_debug("Image is too small\n");
+		return -ENOSPC;
+	}
+
+	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
+		pr_debug("Image is corrupted (bad magic)\n");
+		return -EBADF;
+	}
+
+	if (ehdr->e_phnum == 0) {
+		pr_debug("No loadable segments\n");
+		return -ENOEXEC;
+	}
+
+	if (ehdr->e_phoff > size) {
+		pr_debug("Firmware size is too small\n");
+		return -ENOSPC;
+	}
+
+	return 0;
+}
+
+/* A very simple elf loader, assumes the image is valid */
+int rproc_elf32_load_image(struct udevice *dev, unsigned long addr)
+{
+	Elf32_Ehdr *ehdr; /* Elf header structure pointer */
+	Elf32_Phdr *phdr; /* Program header structure pointer */
+	const struct dm_rproc_ops *ops;
+	unsigned int i;
+
+	ehdr = (Elf32_Ehdr *)addr;
+	phdr = (Elf32_Phdr *)(addr + ehdr->e_phoff);
+
+	ops = rproc_get_ops(dev);
+
+	/* Load each program header */
+	for (i = 0; i < ehdr->e_phnum; ++i) {
+		void *dst = (void *)(uintptr_t)phdr->p_paddr;
+		void *src = (void *)addr + phdr->p_offset;
+
+		if (phdr->p_type != PT_LOAD)
+			continue;
+
+		if (ops->device_to_virt)
+			dst = ops->device_to_virt(dev, (ulong)dst);
+
+		dev_dbg(dev, "Loading phdr %i to 0x%p (%i bytes)\n",
+			i, dst, phdr->p_filesz);
+		if (phdr->p_filesz)
+			memcpy(dst, src, phdr->p_filesz);
+		if (phdr->p_filesz != phdr->p_memsz)
+			memset(dst + phdr->p_filesz, 0x00,
+			       phdr->p_memsz - phdr->p_filesz);
+		flush_cache(rounddown((unsigned long)dst, ARCH_DMA_MINALIGN),
+			    roundup((unsigned long)dst + phdr->p_filesz,
+				    ARCH_DMA_MINALIGN) -
+			    rounddown((unsigned long)dst, ARCH_DMA_MINALIGN));
+		++phdr;
+	}
+
+	return 0;
+}

+ 19 - 0
drivers/remoteproc/sandbox_testproc.c

@@ -8,6 +8,7 @@
 #include <dm.h>
 #include <errno.h>
 #include <remoteproc.h>
+#include <asm/io.h>
 
 /**
  * enum sandbox_state - different device states
@@ -300,6 +301,23 @@ static int sandbox_testproc_ping(struct udevice *dev)
 	return ret;
 }
 
+#define SANDBOX_RPROC_DEV_TO_PHY_OFFSET	0x1000
+/**
+ * sandbox_testproc_device_to_virt() - Convert device address to virtual address
+ * @dev:	device to operate upon
+ * @da:		device address
+ * @return converted virtual address
+ */
+static void *sandbox_testproc_device_to_virt(struct udevice *dev, ulong da)
+{
+	u64 paddr;
+
+	/* Use a simple offset conversion */
+	paddr = da + SANDBOX_RPROC_DEV_TO_PHY_OFFSET;
+
+	return phys_to_virt(paddr);
+}
+
 static const struct dm_rproc_ops sandbox_testproc_ops = {
 	.init = sandbox_testproc_init,
 	.reset = sandbox_testproc_reset,
@@ -308,6 +326,7 @@ static const struct dm_rproc_ops sandbox_testproc_ops = {
 	.stop = sandbox_testproc_stop,
 	.is_running = sandbox_testproc_is_running,
 	.ping = sandbox_testproc_ping,
+	.device_to_virt = sandbox_testproc_device_to_virt,
 };
 
 static const struct udevice_id sandbox_ids[] = {

+ 257 - 0
drivers/remoteproc/stm32_copro.c

@@ -0,0 +1,257 @@
+// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+/*
+ * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
+ */
+#define pr_fmt(fmt) "%s: " fmt, __func__
+#include <common.h>
+#include <dm.h>
+#include <errno.h>
+#include <fdtdec.h>
+#include <regmap.h>
+#include <remoteproc.h>
+#include <reset.h>
+#include <syscon.h>
+#include <asm/io.h>
+
+#define RCC_GCR_HOLD_BOOT	0
+#define RCC_GCR_RELEASE_BOOT	1
+
+/**
+ * struct stm32_copro_privdata - power processor private data
+ * @reset_ctl:		reset controller handle
+ * @hold_boot_regmap:	regmap for remote processor reset hold boot
+ * @hold_boot_offset:	offset of the register controlling the hold boot setting
+ * @hold_boot_mask:	bitmask of the register for the hold boot field
+ * @is_running:		is the remote processor running
+ */
+struct stm32_copro_privdata {
+	struct reset_ctl reset_ctl;
+	struct regmap *hold_boot_regmap;
+	uint hold_boot_offset;
+	uint hold_boot_mask;
+	bool is_running;
+};
+
+/**
+ * stm32_copro_probe() - Basic probe
+ * @dev:	corresponding STM32 remote processor device
+ * @return 0 if all went ok, else corresponding -ve error
+ */
+static int stm32_copro_probe(struct udevice *dev)
+{
+	struct stm32_copro_privdata *priv;
+	struct regmap *regmap;
+	const fdt32_t *cell;
+	int len, ret;
+
+	priv = dev_get_priv(dev);
+
+	regmap = syscon_regmap_lookup_by_phandle(dev, "st,syscfg-holdboot");
+	if (IS_ERR(regmap)) {
+		dev_err(dev, "unable to find holdboot regmap (%ld)\n",
+			PTR_ERR(regmap));
+		return PTR_ERR(regmap);
+	}
+
+	cell = dev_read_prop(dev, "st,syscfg-holdboot", &len);
+	if (len < 3 * sizeof(fdt32_t)) {
+		dev_err(dev, "holdboot offset and mask not available\n");
+		return -EINVAL;
+	}
+
+	priv->hold_boot_regmap = regmap;
+	priv->hold_boot_offset = fdtdec_get_number(cell + 1, 1);
+	priv->hold_boot_mask = fdtdec_get_number(cell + 2, 1);
+
+	ret = reset_get_by_index(dev, 0, &priv->reset_ctl);
+	if (ret) {
+		dev_err(dev, "failed to get reset (%d)\n", ret);
+		return ret;
+	}
+
+	dev_dbg(dev, "probed\n");
+
+	return 0;
+}
+
+/**
+ * stm32_copro_set_hold_boot() - Hold boot bit management
+ * @dev:	corresponding STM32 remote processor device
+ * @hold:	hold boot value
+ * @return 0 if all went ok, else corresponding -ve error
+ */
+static int stm32_copro_set_hold_boot(struct udevice *dev, bool hold)
+{
+	struct stm32_copro_privdata *priv;
+	uint val;
+	int ret;
+
+	priv = dev_get_priv(dev);
+
+	val = hold ? RCC_GCR_HOLD_BOOT : RCC_GCR_RELEASE_BOOT;
+
+	/*
+	 * Note: shall run an SMC call (STM32_SMC_RCC) if platform is secured.
+	 * To be updated when the code for this SMC service is available which
+	 * is not the case for the time being.
+	 */
+	ret = regmap_update_bits(priv->hold_boot_regmap, priv->hold_boot_offset,
+				 priv->hold_boot_mask, val);
+	if (ret)
+		dev_err(dev, "failed to set hold boot\n");
+
+	return ret;
+}
+
+/**
+ * stm32_copro_device_to_virt() - Convert device address to virtual address
+ * @dev:	corresponding STM32 remote processor device
+ * @da:		device address
+ * @return converted virtual address
+ */
+static void *stm32_copro_device_to_virt(struct udevice *dev, ulong da)
+{
+	fdt32_t in_addr = cpu_to_be32(da);
+	u64 paddr;
+
+	paddr = dev_translate_dma_address(dev, &in_addr);
+	if (paddr == OF_BAD_ADDR) {
+		dev_err(dev, "Unable to convert address %ld\n", da);
+		return NULL;
+	}
+
+	return phys_to_virt(paddr);
+}
+
+/**
+ * stm32_copro_load() - Loadup the STM32 remote processor
+ * @dev:	corresponding STM32 remote processor device
+ * @addr:	Address in memory where image is stored
+ * @size:	Size in bytes of the image
+ * @return 0 if all went ok, else corresponding -ve error
+ */
+static int stm32_copro_load(struct udevice *dev, ulong addr, ulong size)
+{
+	struct stm32_copro_privdata *priv;
+	int ret;
+
+	priv = dev_get_priv(dev);
+
+	ret = stm32_copro_set_hold_boot(dev, true);
+	if (ret)
+		return ret;
+
+	ret = reset_assert(&priv->reset_ctl);
+	if (ret) {
+		dev_err(dev, "Unable to assert reset line (ret=%d)\n", ret);
+		return ret;
+	}
+
+	/* Support only ELF32 image */
+	ret = rproc_elf32_sanity_check(addr, size);
+	if (ret) {
+		dev_err(dev, "Invalid ELF32 image (%d)\n", ret);
+		return ret;
+	}
+
+	return rproc_elf32_load_image(dev, addr);
+}
+
+/**
+ * stm32_copro_start() - Start the STM32 remote processor
+ * @dev:	corresponding STM32 remote processor device
+ * @return 0 if all went ok, else corresponding -ve error
+ */
+static int stm32_copro_start(struct udevice *dev)
+{
+	struct stm32_copro_privdata *priv;
+	int ret;
+
+	priv = dev_get_priv(dev);
+
+	/* move hold boot from true to false start the copro */
+	ret = stm32_copro_set_hold_boot(dev, false);
+	if (ret)
+		return ret;
+
+	/*
+	 * Once copro running, reset hold boot flag to avoid copro
+	 * rebooting autonomously
+	 */
+	ret = stm32_copro_set_hold_boot(dev, true);
+	priv->is_running = !ret;
+	return ret;
+}
+
+/**
+ * stm32_copro_reset() - Reset the STM32 remote processor
+ * @dev:	corresponding STM32 remote processor device
+ * @return 0 if all went ok, else corresponding -ve error
+ */
+static int stm32_copro_reset(struct udevice *dev)
+{
+	struct stm32_copro_privdata *priv;
+	int ret;
+
+	priv = dev_get_priv(dev);
+
+	ret = stm32_copro_set_hold_boot(dev, true);
+	if (ret)
+		return ret;
+
+	ret = reset_assert(&priv->reset_ctl);
+	if (ret) {
+		dev_err(dev, "Unable to assert reset line (ret=%d)\n", ret);
+		return ret;
+	}
+
+	priv->is_running = false;
+
+	return 0;
+}
+
+/**
+ * stm32_copro_stop() - Stop the STM32 remote processor
+ * @dev:	corresponding STM32 remote processor device
+ * @return 0 if all went ok, else corresponding -ve error
+ */
+static int stm32_copro_stop(struct udevice *dev)
+{
+	return stm32_copro_reset(dev);
+}
+
+/**
+ * stm32_copro_is_running() - Is the STM32 remote processor running
+ * @dev:	corresponding STM32 remote processor device
+ * @return 1 if the remote processor is running, 0 otherwise
+ */
+static int stm32_copro_is_running(struct udevice *dev)
+{
+	struct stm32_copro_privdata *priv;
+
+	priv = dev_get_priv(dev);
+	return priv->is_running;
+}
+
+static const struct dm_rproc_ops stm32_copro_ops = {
+	.load = stm32_copro_load,
+	.start = stm32_copro_start,
+	.stop =  stm32_copro_stop,
+	.reset = stm32_copro_reset,
+	.is_running = stm32_copro_is_running,
+	.device_to_virt = stm32_copro_device_to_virt,
+};
+
+static const struct udevice_id stm32_copro_ids[] = {
+	{.compatible = "st,stm32mp1-rproc"},
+	{}
+};
+
+U_BOOT_DRIVER(stm32_copro) = {
+	.name = "stm32_m4_proc",
+	.of_match = stm32_copro_ids,
+	.id = UCLASS_REMOTEPROC,
+	.ops = &stm32_copro_ops,
+	.probe = stm32_copro_probe,
+	.priv_auto_alloc_size = sizeof(struct stm32_copro_privdata),
+};

+ 6 - 0
drivers/rtc/Kconfig

@@ -120,4 +120,10 @@ config RTC_M41T62
 	  Enable driver for ST's M41T62 compatible RTC devices (like RV-4162).
 	  It is a serial (I2C) real-time clock (RTC) with alarm.
 
+config RTC_STM32
+	bool "Enable STM32 RTC driver"
+	depends on DM_RTC
+	help
+	  Enable STM32 RTC driver. This driver supports the rtc that is present
+	  on some STM32 SoCs.
 endmenu

+ 1 - 0
drivers/rtc/Makefile

@@ -51,5 +51,6 @@ obj-$(CONFIG_RTC_RX8025) += rx8025.o
 obj-$(CONFIG_RTC_RX8010SJ) += rx8010sj.o
 obj-$(CONFIG_RTC_S3C24X0) += s3c24x0_rtc.o
 obj-$(CONFIG_RTC_S35392A) += s35392a.o
+obj-$(CONFIG_RTC_STM32) += stm32_rtc.o
 obj-$(CONFIG_SANDBOX) += sandbox_rtc.o
 obj-$(CONFIG_RTC_X1205) += x1205.o

+ 323 - 0
drivers/rtc/stm32_rtc.c

@@ -0,0 +1,323 @@
+// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+/*
+ * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
+ */
+#include <common.h>
+#include <clk.h>
+#include <dm.h>
+#include <rtc.h>
+#include <asm/io.h>
+#include <linux/iopoll.h>
+
+#define STM32_RTC_TR		0x00
+#define STM32_RTC_DR		0x04
+#define STM32_RTC_ISR		0x0C
+#define STM32_RTC_PRER		0x10
+#define STM32_RTC_CR		0x18
+#define STM32_RTC_WPR		0x24
+
+/* STM32_RTC_TR bit fields  */
+#define STM32_RTC_SEC_SHIFT	0
+#define STM32_RTC_SEC		GENMASK(6, 0)
+#define STM32_RTC_MIN_SHIFT	8
+#define STM32_RTC_MIN		GENMASK(14, 8)
+#define STM32_RTC_HOUR_SHIFT	16
+#define STM32_RTC_HOUR		GENMASK(21, 16)
+
+/* STM32_RTC_DR bit fields */
+#define STM32_RTC_DATE_SHIFT	0
+#define STM32_RTC_DATE		GENMASK(5, 0)
+#define STM32_RTC_MONTH_SHIFT	8
+#define STM32_RTC_MONTH		GENMASK(12, 8)
+#define STM32_RTC_WDAY_SHIFT	13
+#define STM32_RTC_WDAY		GENMASK(15, 13)
+#define STM32_RTC_YEAR_SHIFT	16
+#define STM32_RTC_YEAR		GENMASK(23, 16)
+
+/* STM32_RTC_CR bit fields */
+#define STM32_RTC_CR_FMT	BIT(6)
+
+/* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
+#define STM32_RTC_ISR_INITS	BIT(4)
+#define STM32_RTC_ISR_RSF	BIT(5)
+#define STM32_RTC_ISR_INITF	BIT(6)
+#define STM32_RTC_ISR_INIT	BIT(7)
+
+/* STM32_RTC_PRER bit fields */
+#define STM32_RTC_PRER_PRED_S_SHIFT	0
+#define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
+#define STM32_RTC_PRER_PRED_A_SHIFT	16
+#define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
+
+/* STM32_RTC_WPR key constants */
+#define RTC_WPR_1ST_KEY		0xCA
+#define RTC_WPR_2ND_KEY		0x53
+#define RTC_WPR_WRONG_KEY	0xFF
+
+struct stm32_rtc_priv {
+	fdt_addr_t base;
+};
+
+static int stm32_rtc_get(struct udevice *dev, struct rtc_time *tm)
+{
+	struct stm32_rtc_priv *priv = dev_get_priv(dev);
+	u32 tr, dr;
+
+	tr = readl(priv->base + STM32_RTC_TR);
+	dr = readl(priv->base + STM32_RTC_DR);
+
+	tm->tm_sec = bcd2bin((tr & STM32_RTC_SEC) >> STM32_RTC_SEC_SHIFT);
+	tm->tm_min = bcd2bin((tr & STM32_RTC_MIN) >> STM32_RTC_MIN_SHIFT);
+	tm->tm_hour = bcd2bin((tr & STM32_RTC_HOUR) >> STM32_RTC_HOUR_SHIFT);
+
+	tm->tm_mday = bcd2bin((dr & STM32_RTC_DATE) >> STM32_RTC_DATE_SHIFT);
+	tm->tm_mon = bcd2bin((dr & STM32_RTC_MONTH) >> STM32_RTC_MONTH_SHIFT);
+	tm->tm_year = bcd2bin((dr & STM32_RTC_YEAR) >> STM32_RTC_YEAR_SHIFT);
+	tm->tm_wday = bcd2bin((dr & STM32_RTC_WDAY) >> STM32_RTC_WDAY_SHIFT);
+	tm->tm_yday = 0;
+	tm->tm_isdst = 0;
+
+	dev_dbg(dev, "Get DATE: %4d-%02d-%02d (wday=%d)  TIME: %2d:%02d:%02d\n",
+		tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_wday,
+		tm->tm_hour, tm->tm_min, tm->tm_sec);
+
+	return 0;
+}
+
+static void stm32_rtc_unlock(struct udevice *dev)
+{
+	struct stm32_rtc_priv *priv = dev_get_priv(dev);
+
+	writel(RTC_WPR_1ST_KEY, priv->base + STM32_RTC_WPR);
+	writel(RTC_WPR_2ND_KEY, priv->base + STM32_RTC_WPR);
+}
+
+static void stm32_rtc_lock(struct udevice *dev)
+{
+	struct stm32_rtc_priv *priv = dev_get_priv(dev);
+
+	writel(RTC_WPR_WRONG_KEY, priv->base + STM32_RTC_WPR);
+}
+
+static int stm32_rtc_enter_init_mode(struct udevice *dev)
+{
+	struct stm32_rtc_priv *priv = dev_get_priv(dev);
+	u32 isr = readl(priv->base + STM32_RTC_ISR);
+
+	if (!(isr & STM32_RTC_ISR_INITF)) {
+		isr |= STM32_RTC_ISR_INIT;
+		writel(isr, priv->base + STM32_RTC_ISR);
+
+		return readl_poll_timeout(priv->base + STM32_RTC_ISR,
+					  isr,
+					  (isr & STM32_RTC_ISR_INITF),
+					  100000);
+	}
+
+	return 0;
+}
+
+static int stm32_rtc_wait_sync(struct udevice *dev)
+{
+	struct stm32_rtc_priv *priv = dev_get_priv(dev);
+	u32 isr = readl(priv->base + STM32_RTC_ISR);
+
+	isr &= ~STM32_RTC_ISR_RSF;
+	writel(isr, priv->base + STM32_RTC_ISR);
+
+	/*
+	 * Wait for RSF to be set to ensure the calendar registers are
+	 * synchronised, it takes around 2 rtc_ck clock cycles
+	 */
+	return readl_poll_timeout(priv->base + STM32_RTC_ISR,
+				  isr, (isr & STM32_RTC_ISR_RSF),
+				  100000);
+}
+
+static void stm32_rtc_exit_init_mode(struct udevice *dev)
+{
+	struct stm32_rtc_priv *priv = dev_get_priv(dev);
+	u32 isr = readl(priv->base + STM32_RTC_ISR);
+
+	isr &= ~STM32_RTC_ISR_INIT;
+	writel(isr, priv->base + STM32_RTC_ISR);
+}
+
+static int stm32_rtc_set_time(struct udevice *dev, u32 time, u32 date)
+{
+	struct stm32_rtc_priv *priv = dev_get_priv(dev);
+	int ret;
+
+	stm32_rtc_unlock(dev);
+
+	ret = stm32_rtc_enter_init_mode(dev);
+	if (ret)
+		goto lock;
+
+	writel(time, priv->base + STM32_RTC_TR);
+	writel(date, priv->base + STM32_RTC_DR);
+
+	stm32_rtc_exit_init_mode(dev);
+
+	ret = stm32_rtc_wait_sync(dev);
+
+lock:
+	stm32_rtc_lock(dev);
+	return ret;
+}
+
+static int stm32_rtc_set(struct udevice *dev, const struct rtc_time *tm)
+{
+	u32 t, d;
+
+	dev_dbg(dev, "Set DATE: %4d-%02d-%02d (wday=%d)  TIME: %2d:%02d:%02d\n",
+		tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_wday,
+		tm->tm_hour, tm->tm_min, tm->tm_sec);
+
+	/* Time in BCD format */
+	t = (bin2bcd(tm->tm_sec) << STM32_RTC_SEC_SHIFT) & STM32_RTC_SEC;
+	t |= (bin2bcd(tm->tm_min) << STM32_RTC_MIN_SHIFT) & STM32_RTC_MIN;
+	t |= (bin2bcd(tm->tm_hour) << STM32_RTC_HOUR_SHIFT) & STM32_RTC_HOUR;
+
+	/* Date in BCD format */
+	d = (bin2bcd(tm->tm_mday) << STM32_RTC_DATE_SHIFT) & STM32_RTC_DATE;
+	d |= (bin2bcd(tm->tm_mon) << STM32_RTC_MONTH_SHIFT) & STM32_RTC_MONTH;
+	d |= (bin2bcd(tm->tm_year) << STM32_RTC_YEAR_SHIFT) & STM32_RTC_YEAR;
+	d |= (bin2bcd(tm->tm_wday) << STM32_RTC_WDAY_SHIFT) & STM32_RTC_WDAY;
+
+	return stm32_rtc_set_time(dev, t, d);
+}
+
+static int stm32_rtc_reset(struct udevice *dev)
+{
+	dev_dbg(dev, "Reset DATE\n");
+
+	return stm32_rtc_set_time(dev, 0, 0);
+}
+
+static int stm32_rtc_init(struct udevice *dev)
+{
+	struct stm32_rtc_priv *priv = dev_get_priv(dev);
+	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
+	unsigned int rate;
+	struct clk clk;
+	int ret;
+	u32 isr = readl(priv->base + STM32_RTC_ISR);
+
+	if (isr & STM32_RTC_ISR_INITS)
+		return  0;
+
+	ret = clk_get_by_index(dev, 1, &clk);
+	if (ret)
+		return ret;
+
+	ret = clk_enable(&clk);
+	if (ret) {
+		clk_free(&clk);
+		return ret;
+	}
+
+	rate = clk_get_rate(&clk);
+
+	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
+	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
+	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
+
+	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
+		pred_s = (rate / (pred_a + 1)) - 1;
+
+		if (((pred_s + 1) * (pred_a + 1)) == rate)
+			break;
+	}
+
+	/*
+	 * Can't find a 1Hz, so give priority to RTC power consumption
+	 * by choosing the higher possible value for prediv_a
+	 */
+	if (pred_s > pred_s_max || pred_a > pred_a_max) {
+		pred_a = pred_a_max;
+		pred_s = (rate / (pred_a + 1)) - 1;
+	}
+
+	stm32_rtc_unlock(dev);
+
+	ret = stm32_rtc_enter_init_mode(dev);
+	if (ret) {
+		dev_err(dev,
+			"Can't enter in init mode. Prescaler config failed.\n");
+		goto unlock;
+	}
+
+	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
+	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
+	writel(prer, priv->base + STM32_RTC_PRER);
+
+	/* Force 24h time format */
+	cr = readl(priv->base + STM32_RTC_CR);
+	cr &= ~STM32_RTC_CR_FMT;
+	writel(cr, priv->base + STM32_RTC_CR);
+
+	stm32_rtc_exit_init_mode(dev);
+
+	ret = stm32_rtc_wait_sync(dev);
+
+unlock:
+	stm32_rtc_lock(dev);
+
+	if (ret) {
+		clk_disable(&clk);
+		clk_free(&clk);
+	}
+
+	return ret;
+}
+
+static int stm32_rtc_probe(struct udevice *dev)
+{
+	struct stm32_rtc_priv *priv = dev_get_priv(dev);
+	struct clk clk;
+	int ret;
+
+	priv->base = dev_read_addr(dev);
+	if (priv->base == FDT_ADDR_T_NONE)
+		return -EINVAL;
+
+	ret = clk_get_by_index(dev, 0, &clk);
+	if (ret)
+		return ret;
+
+	ret = clk_enable(&clk);
+	if (ret) {
+		clk_free(&clk);
+		return ret;
+	}
+
+	ret = stm32_rtc_init(dev);
+
+	if (ret) {
+		clk_disable(&clk);
+		clk_free(&clk);
+	}
+
+	return ret;
+}
+
+static const struct rtc_ops stm32_rtc_ops = {
+	.get = stm32_rtc_get,
+	.set = stm32_rtc_set,
+	.reset = stm32_rtc_reset,
+};
+
+static const struct udevice_id stm32_rtc_ids[] = {
+	{ .compatible = "st,stm32mp1-rtc" },
+	{ }
+};
+
+U_BOOT_DRIVER(rtc_stm32) = {
+	.name	= "rtc-stm32",
+	.id	= UCLASS_RTC,
+	.probe	= stm32_rtc_probe,
+	.of_match = stm32_rtc_ids,
+	.ops	= &stm32_rtc_ops,
+	.priv_auto_alloc_size = sizeof(struct stm32_rtc_priv),
+};

+ 0 - 1
drivers/spi/stm32_qspi.c

@@ -526,7 +526,6 @@ static const struct dm_spi_ops stm32_qspi_ops = {
 };
 
 static const struct udevice_id stm32_qspi_ids[] = {
-	{ .compatible = "st,stm32-qspi" },
 	{ .compatible = "st,stm32f469-qspi" },
 	{ }
 };

+ 18 - 0
include/dm/of_addr.h

@@ -26,6 +26,24 @@
  */
 u64 of_translate_address(const struct device_node *no, const __be32 *in_addr);
 
+/**
+ * of_translate_dma_address() - translate a device-tree DMA address to a CPU
+ *				address
+ *
+ * Translate a DMA address from the device-tree into a CPU physical address,
+ * this walks up the tree and applies the various bus mappings on the way.
+ *
+ * Note: We consider that crossing any level with #size-cells == 0 to mean
+ * that translation is impossible (that is we are not dealing with a value
+ * that can be mapped to a cpu physical address). This is not really specified
+ * that way, but this is traditionally the way IBM at least do things
+ *
+ * @np: node to check
+ * @in_addr: pointer to input DMA address
+ * @return translated DMA address or OF_BAD_ADDR on error
+ */
+u64 of_translate_dma_address(const struct device_node *no, const __be32 *in_addr);
+
 /**
  * of_get_address() - obtain an address from a node
  *

+ 15 - 1
include/dm/ofnode.h

@@ -767,7 +767,7 @@ ofnode ofnode_by_prop_value(ofnode from, const char *propname,
 	     node = ofnode_next_subnode(node))
 
 /**
- * ofnode_translate_address() - Tranlate a device-tree address
+ * ofnode_translate_address() - Translate a device-tree address
  *
  * Translate an address from the device-tree into a CPU physical address. This
  * function walks up the tree and applies the various bus mappings along the
@@ -780,6 +780,20 @@ ofnode ofnode_by_prop_value(ofnode from, const char *propname,
  */
 u64 ofnode_translate_address(ofnode node, const fdt32_t *in_addr);
 
+/**
+ * ofnode_translate_dma_address() - Translate a device-tree DMA address
+ *
+ * Translate a DMA address from the device-tree into a CPU physical address.
+ * This function walks up the tree and applies the various bus mappings along
+ * the way.
+ *
+ * @ofnode: Device tree node giving the context in which to translate the
+ *          DMA address
+ * @in_addr: pointer to the DMA address to translate
+ * @return the translated DMA address; OF_BAD_ADDR on error
+ */
+u64 ofnode_translate_dma_address(ofnode node, const fdt32_t *in_addr);
+
 /**
  * ofnode_device_is_compatible() - check if the node is compatible with compat
  *

+ 19 - 1
include/dm/read.h

@@ -499,7 +499,7 @@ int dev_read_resource_byname(struct udevice *dev, const char *name,
 			     struct resource *res);
 
 /**
- * dev_translate_address() - Tranlate a device-tree address
+ * dev_translate_address() - Translate a device-tree address
  *
  * Translate an address from the device-tree into a CPU physical address.  This
  * function walks up the tree and applies the various bus mappings along the
@@ -511,6 +511,19 @@ int dev_read_resource_byname(struct udevice *dev, const char *name,
  */
 u64 dev_translate_address(struct udevice *dev, const fdt32_t *in_addr);
 
+/**
+ * dev_translate_dma_address() - Translate a device-tree DMA address
+ *
+ * Translate a DMA address from the device-tree into a CPU physical address.
+ * This function walks up the tree and applies the various bus mappings along
+ * the way.
+ *
+ * @dev: device giving the context in which to translate the DMA address
+ * @in_addr: pointer to the DMA address to translate
+ * @return the translated DMA address; OF_BAD_ADDR on error
+ */
+u64 dev_translate_dma_address(struct udevice *dev, const fdt32_t *in_addr);
+
 /**
  * dev_read_alias_highest_id - Get highest alias id for the given stem
  * @stem:	Alias stem to be examined
@@ -751,6 +764,11 @@ static inline u64 dev_translate_address(struct udevice *dev, const fdt32_t *in_a
 	return ofnode_translate_address(dev_ofnode(dev), in_addr);
 }
 
+static inline u64 dev_translate_dma_address(struct udevice *dev, const fdt32_t *in_addr)
+{
+	return ofnode_translate_dma_address(dev_ofnode(dev), in_addr);
+}
+
 static inline int dev_read_alias_highest_id(const char *stem)
 {
 	return fdtdec_get_alias_highest_id(gd->fdt_blob, stem);

+ 24 - 0
include/fdt_support.h

@@ -218,8 +218,32 @@ static inline void fdt_fixup_mtdparts(void *fdt,
 #endif
 
 void fdt_del_node_and_alias(void *blob, const char *alias);
+
+/**
+ * Translate an address from the DT into a CPU physical address
+ *
+ * The translation relies on the "ranges" property.
+ *
+ * @param blob		Pointer to device tree blob
+ * @param node_offset	Node DT offset
+ * @param in_addr	Pointer to the address to translate
+ * @return translated address or OF_BAD_ADDR on error
+ */
 u64 fdt_translate_address(const void *blob, int node_offset,
 			  const __be32 *in_addr);
+/**
+ * Translate a DMA address from the DT into a CPU physical address
+ *
+ * The translation relies on the "dma-ranges" property.
+ *
+ * @param blob		Pointer to device tree blob
+ * @param node_offset	Node DT offset
+ * @param in_addr	Pointer to the DMA address to translate
+ * @return translated DMA address or OF_BAD_ADDR on error
+ */
+u64 fdt_translate_dma_address(const void *blob, int node_offset,
+			      const __be32 *in_addr);
+
 int fdt_node_offset_by_compat_reg(void *blob, const char *compat,
 					phys_addr_t compat_off);
 int fdt_alloc_phandle(void *blob);

+ 107 - 39
include/remoteproc.h

@@ -45,33 +45,86 @@ struct dm_rproc_uclass_pdata {
 };
 
 /**
- * struct dm_rproc_ops - Operations that are provided by remote proc driver
- * @init:	Initialize the remoteproc device invoked after probe (optional)
- *		Return 0 on success, -ve error on fail
- * @load:	Load the remoteproc device using data provided(mandatory)
- *		This takes the following additional arguments.
- *			addr- Address of the binary image to be loaded
- *			size- Size of the binary image to be loaded
- *		Return 0 on success, -ve error on fail
- * @start:	Start the remoteproc device (mandatory)
- *		Return 0 on success, -ve error on fail
- * @stop:	Stop the remoteproc device (optional)
- *		Return 0 on success, -ve error on fail
- * @reset:	Reset the remote proc device (optional)
- *		Return 0 on success, -ve error on fail
- * @is_running:	Check if the remote processor is running(optional)
- *		Return 0 on success, 1 if not running, -ve on others errors
- * @ping:	Ping the remote device for basic communication check(optional)
- *		Return 0 on success, 1 if not responding, -ve on other errors
+ * struct dm_rproc_ops - Driver model remote proc operations.
+ *
+ * This defines the operations provided by remote proc driver.
  */
 struct dm_rproc_ops {
+	/**
+	 * init() - Initialize the remoteproc device (optional)
+	 *
+	 * This is called after the probe is completed allowing the remote
+	 * processor drivers to split up the initializations between probe and
+	 * init if needed.
+	 *
+	 * @dev:	Remote proc device
+	 * @return 0 if all ok, else appropriate error value.
+	 */
 	int (*init)(struct udevice *dev);
+
+	/**
+	 * load() - Load the remoteproc device using data provided (mandatory)
+	 *
+	 * Load the remoteproc device with an image, do not start the device.
+	 *
+	 * @dev:	Remote proc device
+	 * @addr:	Address of the image to be loaded
+	 * @size:	Size of the image to be loaded
+	 * @return 0 if all ok, else appropriate error value.
+	 */
 	int (*load)(struct udevice *dev, ulong addr, ulong size);
+
+	/**
+	 * start() - Start the remoteproc device (mandatory)
+	 *
+	 * @dev:	Remote proc device
+	 * @return 0 if all ok, else appropriate error value.
+	 */
 	int (*start)(struct udevice *dev);
+
+	/**
+	 * stop() - Stop the remoteproc device (optional)
+	 *
+	 * @dev:	Remote proc device
+	 * @return 0 if all ok, else appropriate error value.
+	 */
 	int (*stop)(struct udevice *dev);
+
+	/**
+	 * reset() - Reset the remoteproc device (optional)
+	 *
+	 * @dev:	Remote proc device
+	 * @return 0 if all ok, else appropriate error value.
+	 */
 	int (*reset)(struct udevice *dev);
+
+	/**
+	 * is_running() - Check if the remote processor is running (optional)
+	 *
+	 * @dev:	Remote proc device
+	 * @return 0 if running, 1 if not running, -ve on error.
+	 */
 	int (*is_running)(struct udevice *dev);
+
+	/**
+	 * ping() - Ping the remote device for basic communication (optional)
+	 *
+	 * @dev:	Remote proc device
+	 * @return 0 on success, 1 if not responding, -ve on other errors.
+	 */
 	int (*ping)(struct udevice *dev);
+
+	/**
+	 * device_to_virt() - Return translated virtual address (optional)
+	 *
+	 * Translate a device address (remote processor view) to virtual
+	 * address (main processor view).
+	 *
+	 * @dev:	Remote proc device
+	 * @da:		Device address
+	 * @return virtual address.
+	 */
+	void * (*device_to_virt)(struct udevice *dev, ulong da);
 };
 
 /* Accessor */
@@ -80,82 +133,93 @@ struct dm_rproc_ops {
 #ifdef CONFIG_REMOTEPROC
 /**
  * rproc_init() - Initialize all bound remote proc devices
- *
- * Return: 0 if all ok, else appropriate error value.
+ * @return 0 if all ok, else appropriate error value.
  */
 int rproc_init(void);
 
 /**
  * rproc_dev_init() - Initialize a remote proc device based on id
  * @id:		id of the remote processor
- *
- * Return: 0 if all ok, else appropriate error value.
+ * @return 0 if all ok, else appropriate error value.
  */
 int rproc_dev_init(int id);
 
 /**
  * rproc_is_initialized() - check to see if remoteproc devices are initialized
- *
- * Return: 0 if all devices are initialized, else appropriate error value.
+ * @return true if all devices are initialized, false otherwise.
  */
 bool rproc_is_initialized(void);
 
 /**
- * rproc_load() - load binary to a remote processor
+ * rproc_load() - load binary or elf to a remote processor
  * @id:		id of the remote processor
- * @addr:	address in memory where the binary image is located
- * @size:	size of the binary image
- *
- * Return: 0 if all ok, else appropriate error value.
+ * @addr:	address in memory where the image is located
+ * @size:	size of the image
+ * @return 0 if all ok, else appropriate error value.
  */
 int rproc_load(int id, ulong addr, ulong size);
 
 /**
  * rproc_start() - Start a remote processor
  * @id:		id of the remote processor
- *
- * Return: 0 if all ok, else appropriate error value.
+ * @return 0 if all ok, else appropriate error value.
  */
 int rproc_start(int id);
 
 /**
  * rproc_stop() - Stop a remote processor
  * @id:		id of the remote processor
- *
- * Return: 0 if all ok, else appropriate error value.
+ * @return 0 if all ok, else appropriate error value.
  */
 int rproc_stop(int id);
 
 /**
  * rproc_reset() - reset a remote processor
  * @id:		id of the remote processor
- *
- * Return: 0 if all ok, else appropriate error value.
+ * @return 0 if all ok, else appropriate error value.
  */
 int rproc_reset(int id);
 
 /**
  * rproc_ping() - ping a remote processor to check if it can communicate
  * @id:		id of the remote processor
+ * @return 0 if all ok, else appropriate error value.
  *
  * NOTE: this might need communication path available, which is not implemented
  * as part of remoteproc framework - hook on to appropriate bus architecture to
  * do the same
- *
- * Return: 0 if all ok, else appropriate error value.
  */
 int rproc_ping(int id);
 
 /**
  * rproc_is_running() - check to see if remote processor is running
  * @id:		id of the remote processor
+ * @return 0 if running, 1 if not running, -ve on error.
  *
  * NOTE: this may not involve actual communication capability of the remote
  * processor, but just ensures that it is out of reset and executing code.
- *
- * Return: 0 if all ok, else appropriate error value.
  */
 int rproc_is_running(int id);
+
+/**
+ * rproc_elf32_sanity_check() - Verify if an image is a valid ELF32 one
+ *
+ * Check if a valid ELF32 image exists at the given memory location. Verify
+ * basic ELF32 format requirements like magic number and sections size.
+ *
+ * @addr:	address of the image to verify
+ * @size:	size of the image
+ * @return 0 if the image looks good, else appropriate error value.
+ */
+int rproc_elf32_sanity_check(ulong addr, ulong size);
+
+/**
+ * rproc_elf32_load_image() - load an ELF32 image
+ * @dev:	device loading the ELF32 image
+ * @addr:	valid ELF32 image address
+ * @return 0 if the image is successfully loaded, else appropriate error value.
+ */
+int rproc_elf32_load_image(struct udevice *dev, unsigned long addr);
 #else
 static inline int rproc_init(void) { return -ENOSYS; }
 static inline int rproc_dev_init(int id) { return -ENOSYS; }
@@ -166,6 +230,10 @@ static inline int rproc_stop(int id) { return -ENOSYS; }
 static inline int rproc_reset(int id) { return -ENOSYS; }
 static inline int rproc_ping(int id) { return -ENOSYS; }
 static inline int rproc_is_running(int id) { return -ENOSYS; }
+static inline int rproc_elf32_sanity_check(ulong addr,
+					   ulong size) { return -ENOSYS; }
+static inline int rproc_elf32_load_image(struct udevice *dev,
+					 unsigned long addr) { return -ENOSYS; }
 #endif
 
 #endif	/* _RPROC_H_ */

+ 122 - 0
test/dm/remoteproc.c

@@ -5,8 +5,10 @@
  */
 #include <common.h>
 #include <dm.h>
+#include <elf.h>
 #include <errno.h>
 #include <remoteproc.h>
+#include <asm/io.h>
 #include <dm/test.h>
 #include <test/ut.h>
 /**
@@ -65,3 +67,123 @@ static int dm_test_remoteproc_base(struct unit_test_state *uts)
 	return 0;
 }
 DM_TEST(dm_test_remoteproc_base, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+#define DEVICE_TO_PHYSICAL_OFFSET	0x1000
+/**
+ * dm_test_remoteproc_elf() - test the ELF operations
+ * @uts:	unit test state
+ *
+ * Return:	0 if test passed, else error
+ */
+static int dm_test_remoteproc_elf(struct unit_test_state *uts)
+{
+	u8 valid_elf32[] = {
+		/* @0x00 - ELF HEADER - */
+		/* ELF magic */
+		0x7f, 0x45, 0x4c, 0x46,
+		/* 32 Bits */
+		0x01,
+		/* Endianness */
+#ifdef __LITTLE_ENDIAN
+		0x01,
+#else
+		0x02,
+#endif
+		/* Version */
+		0x01,
+		/* Padding */
+		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+		/* Type : executable */
+		0x02, 0x00,
+		/* Machine: ARM */
+		0x28, 0x00,
+		/* Version */
+		0x01, 0x00, 0x00, 0x00,
+		/* Entry */
+		0x00, 0x00, 0x00, 0x08,
+		/* phoff (program header offset @ 0x40)*/
+		0x40, 0x00, 0x00, 0x00,
+		/* shoff (section header offset : none) */
+		0x00, 0x00, 0x00, 0x00,
+		/* flags */
+		0x00, 0x00, 0x00, 0x00,
+		/* ehsize (elf header size = 0x34) */
+		0x34, 0x00,
+		/* phentsize (program header size = 0x20) */
+		0x20, 0x00,
+		/* phnum (program header number : 1) */
+		0x01, 0x00,
+		/* shentsize (section heade size : none) */
+		0x00, 0x00,
+		/* shnum (section header number: none) */
+		0x00, 0x00,
+		/* shstrndx (section header name section index: none) */
+		0x00, 0x00,
+		/* padding */
+		0x00, 0x00, 0x00, 0x00,
+		0x00, 0x00, 0x00, 0x00,
+		0x00, 0x00, 0x00, 0x00,
+		/* @0x40 - PROGRAM HEADER TABLE - */
+		/* type : PT_LOAD */
+		0x01, 0x00, 0x00, 0x00,
+		/* offset */
+		0x00, 0x00, 0x00, 0x00,
+		/* vaddr */
+		0x00, 0x00, 0x00, 0x00,
+		/* paddr : physical address */
+		0x00, 0x00, 0x00, 0x00,
+		/* filesz : 0x20 bytes (program header size) */
+		0x20, 0x00, 0x00, 0x00,
+		/* memsz = filesz */
+		0x20, 0x00, 0x00, 0x00,
+		/* flags : readable and exectuable */
+		0x05, 0x00, 0x00, 0x00,
+		/* padding */
+		0x00, 0x00, 0x00, 0x00,
+	};
+	unsigned int size = ARRAY_SIZE(valid_elf32);
+	struct udevice *dev;
+	phys_addr_t loaded_firmware_paddr;
+	void *loaded_firmware;
+	u32 loaded_firmware_size;
+	Elf32_Ehdr *ehdr = (Elf32_Ehdr *)valid_elf32;
+	Elf32_Phdr *phdr = (Elf32_Phdr *)(valid_elf32 + ehdr->e_phoff);
+
+	ut_assertok(uclass_get_device(UCLASS_REMOTEPROC, 0, &dev));
+
+	/*
+	 * In its Program Header Table, let the firmware specifies to be loaded
+	 * at SDRAM_BASE *device* address (p_paddr field).
+	 * Its size is defined by the p_filesz field.
+	 */
+	phdr->p_paddr = CONFIG_SYS_SDRAM_BASE;
+	loaded_firmware_size = phdr->p_filesz;
+
+	/*
+	 * This *device* address is converted to a *physical* address by the
+	 * device_to_virt() operation of sandbox_test_rproc which returns
+	 * DeviceAddress + DEVICE_TO_PHYSICAL_OFFSET.
+	 * This is where we expect to get the firmware loaded.
+	 */
+	loaded_firmware_paddr = phdr->p_paddr + DEVICE_TO_PHYSICAL_OFFSET;
+	loaded_firmware = map_physmem(loaded_firmware_paddr,
+				      loaded_firmware_size, MAP_NOCACHE);
+	ut_assertnonnull(loaded_firmware);
+	memset(loaded_firmware, 0, loaded_firmware_size);
+
+	/* Verify valid ELF format */
+	ut_assertok(rproc_elf32_sanity_check((ulong)valid_elf32, size));
+
+	/* Load firmware in loaded_firmware, and verify it */
+	ut_assertok(rproc_elf32_load_image(dev, (unsigned long)valid_elf32));
+	ut_assertok(memcmp(loaded_firmware, valid_elf32, loaded_firmware_size));
+	unmap_physmem(loaded_firmware, MAP_NOCACHE);
+
+	/* Invalid ELF Magic */
+	valid_elf32[0] = 0;
+	ut_asserteq(-EPROTONOSUPPORT,
+		    rproc_elf32_sanity_check((ulong)valid_elf32, size));
+
+	return 0;
+}
+DM_TEST(dm_test_remoteproc_elf, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);

+ 12 - 0
test/dm/test-fdt.c

@@ -490,6 +490,7 @@ U_BOOT_DRIVER(fdt_dummy_drv) = {
 static int dm_test_fdt_translation(struct unit_test_state *uts)
 {
 	struct udevice *dev;
+	fdt32_t dma_addr[2];
 
 	/* Some simple translations */
 	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
@@ -509,6 +510,17 @@ static int dm_test_fdt_translation(struct unit_test_state *uts)
 	ut_asserteq_str("dev@42", dev->name);
 	ut_asserteq(0x42, dev_read_addr(dev));
 
+	/* dma address translation */
+	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
+	dma_addr[0] = cpu_to_be32(0);
+	dma_addr[1] = cpu_to_be32(0);
+	ut_asserteq(0x10000000, dev_translate_dma_address(dev, dma_addr));
+
+	ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, true, &dev));
+	dma_addr[0] = cpu_to_be32(1);
+	dma_addr[1] = cpu_to_be32(0x100);
+	ut_asserteq(0x20000000, dev_translate_dma_address(dev, dma_addr));
+
 	return 0;
 }
 DM_TEST(dm_test_fdt_translation, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);