/* * SSP1601 to ARM recompiler * (C) notaz, 2008,2009,2010 * * This work is licensed under the terms of MAME license. * See COPYING file in the top-level directory. */ #include "../../pico_int.h" #include "../../../cpu/drc/cmn.h" #include "compiler.h" // FIXME: asm has these hardcoded #define SSP_BLOCKTAB_ENTS (0x5090/2) #define SSP_BLOCKTAB_IRAM_ONE (0x800/2) // table entries #define SSP_BLOCKTAB_IRAM_ENTS (15*SSP_BLOCKTAB_IRAM_ONE) static u32 **ssp_block_table; // [0x5090/2]; static u32 **ssp_block_table_iram; // [15][0x800/2]; static u32 *tcache_ptr = NULL; static int nblocks = 0; static int n_in_ops = 0; extern ssp1601_t *ssp; #define rPC ssp->gr[SSP_PC].h #define rPMC ssp->gr[SSP_PMC] #define SSP_FLAG_Z (1<<0xd) #define SSP_FLAG_N (1<<0xf) #ifndef __arm__ //#define DUMP_BLOCK 0x0c9a void ssp_drc_next(void){} void ssp_drc_next_patch(void){} void ssp_drc_end(void){} #endif #define COUNT_OP #include "../../../cpu/drc/emit_arm.c" // ----------------------------------------------------- static int get_inc(int mode) { int inc = (mode >> 11) & 7; if (inc != 0) { if (inc != 7) inc--; inc = 1 << inc; // 0 1 2 4 8 16 32 128 if (mode & 0x8000) inc = -inc; // decrement mode } return inc; } u32 ssp_pm_read(int reg) { u32 d = 0, mode; if (ssp->emu_status & SSP_PMC_SET) { ssp->pmac_read[reg] = rPMC.v; ssp->emu_status &= ~SSP_PMC_SET; return 0; } // just in case ssp->emu_status &= ~SSP_PMC_HAVE_ADDR; mode = ssp->pmac_read[reg]>>16; if ((mode & 0xfff0) == 0x0800) // ROM { d = ((unsigned short *)Pico.rom)[ssp->pmac_read[reg]&0xfffff]; ssp->pmac_read[reg] += 1; } else if ((mode & 0x47ff) == 0x0018) // DRAM { unsigned short *dram = (unsigned short *)svp->dram; int inc = get_inc(mode); d = dram[ssp->pmac_read[reg]&0xffff]; ssp->pmac_read[reg] += inc; } // PMC value corresponds to last PMR accessed rPMC.v = ssp->pmac_read[reg]; return d; } #define overwrite_write(dst, d) \ { \ if (d & 0xf000) { dst &= ~0xf000; dst |= d & 0xf000; } \ if (d & 0x0f00) { dst &= ~0x0f00; dst |= d & 0x0f00; } \ if (d & 0x00f0) { dst &= ~0x00f0; dst |= d & 0x00f0; } \ if (d & 0x000f) { dst &= ~0x000f; dst |= d & 0x000f; } \ } void ssp_pm_write(u32 d, int reg) { unsigned short *dram; int mode, addr; if (ssp->emu_status & SSP_PMC_SET) { ssp->pmac_write[reg] = rPMC.v; ssp->emu_status &= ~SSP_PMC_SET; return; } // just in case ssp->emu_status &= ~SSP_PMC_HAVE_ADDR; dram = (unsigned short *)svp->dram; mode = ssp->pmac_write[reg]>>16; addr = ssp->pmac_write[reg]&0xffff; if ((mode & 0x43ff) == 0x0018) // DRAM { int inc = get_inc(mode); if (mode & 0x0400) { overwrite_write(dram[addr], d); } else dram[addr] = d; ssp->pmac_write[reg] += inc; } else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc { if (mode & 0x0400) { overwrite_write(dram[addr], d); } else dram[addr] = d; ssp->pmac_write[reg] += (addr&1) ? 0x1f : 1; } else if ((mode & 0x47ff) == 0x001c) // IRAM { int inc = get_inc(mode); ((unsigned short *)svp->iram_rom)[addr&0x3ff] = d; ssp->pmac_write[reg] += inc; ssp->drc.iram_dirty = 1; } rPMC.v = ssp->pmac_write[reg]; } // ----------------------------------------------------- // 14 IRAM blocks static unsigned char iram_context_map[] = { 0, 0, 0, 0, 1, 0, 0, 0, // 04 0, 0, 0, 0, 0, 0, 2, 0, // 0e 0, 0, 0, 0, 0, 3, 0, 4, // 15 17 5, 0, 0, 6, 0, 7, 0, 0, // 18 1b 1d 8, 9, 0, 0, 0,10, 0, 0, // 20 21 25 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,11, 0, 0,12, 0, 0, // 32 35 13,14, 0, 0, 0, 0, 0, 0 // 38 39 }; int ssp_get_iram_context(void) { unsigned char *ir = (unsigned char *)svp->iram_rom; int val1, val = ir[0x083^1] + ir[0x4FA^1] + ir[0x5F7^1] + ir[0x47B^1]; val1 = iram_context_map[(val>>1)&0x3f]; if (val1 == 0) { elprintf(EL_ANOMALY, "svp: iram ctx val: %02x PC=%04x\n", (val>>1)&0x3f, rPC); //debug_dump2file(name, svp->iram_rom, 0x800); //exit(1); } return val1; } // ----------------------------------------------------- /* regs with known values */ static struct { ssp_reg_t gr[8]; unsigned char r[8]; unsigned int pmac_read[5]; unsigned int pmac_write[5]; ssp_reg_t pmc; unsigned int emu_status; } known_regs; #define KRREG_X (1 << SSP_X) #define KRREG_Y (1 << SSP_Y) #define KRREG_A (1 << SSP_A) /* AH only */ #define KRREG_ST (1 << SSP_ST) #define KRREG_STACK (1 << SSP_STACK) #define KRREG_PC (1 << SSP_PC) #define KRREG_P (1 << SSP_P) #define KRREG_PR0 (1 << 8) #define KRREG_PR4 (1 << 12) #define KRREG_AL (1 << 16) #define KRREG_PMCM (1 << 18) /* only mode word of PMC */ #define KRREG_PMC (1 << 19) #define KRREG_PM0R (1 << 20) #define KRREG_PM1R (1 << 21) #define KRREG_PM2R (1 << 22) #define KRREG_PM3R (1 << 23) #define KRREG_PM4R (1 << 24) #define KRREG_PM0W (1 << 25) #define KRREG_PM1W (1 << 26) #define KRREG_PM2W (1 << 27) #define KRREG_PM3W (1 << 28) #define KRREG_PM4W (1 << 29) /* bitfield of known register values */ static u32 known_regb = 0; /* known vals, which need to be flushed * (only ST, P, r0-r7, PMCx, PMxR, PMxW) * ST means flags are being held in ARM PSR * P means that it needs to be recalculated */ static u32 dirty_regb = 0; /* known values of host regs. * -1 - unknown * 000000-00ffff - 16bit value * 100000-10ffff - base reg (r7) + 16bit val * 0r0000 - means reg (low) eq gr[r].h, r != AL */ static int hostreg_r[4]; static void hostreg_clear(void) { int i; for (i = 0; i < 4; i++) hostreg_r[i] = -1; } static void hostreg_sspreg_changed(int sspreg) { int i; for (i = 0; i < 4; i++) if (hostreg_r[i] == (sspreg<<16)) hostreg_r[i] = -1; } #define PROGRAM(x) ((unsigned short *)svp->iram_rom)[x] #define PROGRAM_P(x) ((unsigned short *)svp->iram_rom + (x)) void tr_unhandled(void) { //FILE *f = fopen("tcache.bin", "wb"); //fwrite(tcache, 1, (tcache_ptr - tcache)*4, f); //fclose(f); elprintf(EL_ANOMALY, "unhandled @ %04x\n", known_regs.gr[SSP_PC].h<<1); //exit(1); } /* update P, if needed. Trashes r0 */ static void tr_flush_dirty_P(void) { // TODO: const regs if (!(dirty_regb & KRREG_P)) return; EOP_MOV_REG_ASR(10, 4, 16); // mov r10, r4, asr #16 EOP_MOV_REG_LSL( 0, 4, 16); // mov r0, r4, lsl #16 EOP_MOV_REG_ASR( 0, 0, 15); // mov r0, r0, asr #15 EOP_MUL(10, 0, 10); // mul r10, r0, r10 dirty_regb &= ~KRREG_P; hostreg_r[0] = -1; } /* write dirty pr to host reg. Nothing is trashed */ static void tr_flush_dirty_pr(int r) { int ror = 0, reg; if (!(dirty_regb & (1 << (r+8)))) return; switch (r&3) { case 0: ror = 0; break; case 1: ror = 24/2; break; case 2: ror = 16/2; break; } reg = (r < 4) ? 8 : 9; EOP_BIC_IMM(reg,reg,ror,0xff); if (known_regs.r[r] != 0) EOP_ORR_IMM(reg,reg,ror,known_regs.r[r]); dirty_regb &= ~(1 << (r+8)); } /* write all dirty pr0-pr7 to host regs. Nothing is trashed */ static void tr_flush_dirty_prs(void) { int i, ror = 0, reg; int dirty = dirty_regb >> 8; if ((dirty&7) == 7) { emith_move_r_imm(8, known_regs.r[0]|(known_regs.r[1]<<8)|(known_regs.r[2]<<16)); dirty &= ~7; } if ((dirty&0x70) == 0x70) { emith_move_r_imm(9, known_regs.r[4]|(known_regs.r[5]<<8)|(known_regs.r[6]<<16)); dirty &= ~0x70; } /* r0-r7 */ for (i = 0; dirty && i < 8; i++, dirty >>= 1) { if (!(dirty&1)) continue; switch (i&3) { case 0: ror = 0; break; case 1: ror = 24/2; break; case 2: ror = 16/2; break; } reg = (i < 4) ? 8 : 9; EOP_BIC_IMM(reg,reg,ror,0xff); if (known_regs.r[i] != 0) EOP_ORR_IMM(reg,reg,ror,known_regs.r[i]); } dirty_regb &= ~0xff00; } /* write dirty pr and "forget" it. Nothing is trashed. */ static void tr_release_pr(int r) { tr_flush_dirty_pr(r); known_regb &= ~(1 << (r+8)); } /* fush ARM PSR to r6. Trashes r1 */ static void tr_flush_dirty_ST(void) { if (!(dirty_regb & KRREG_ST)) return; EOP_BIC_IMM(6,6,0,0x0f); EOP_MRS(1); EOP_ORR_REG_LSR(6,6,1,28); dirty_regb &= ~KRREG_ST; hostreg_r[1] = -1; } /* inverse of above. Trashes r1 */ static void tr_make_dirty_ST(void) { if (dirty_regb & KRREG_ST) return; if (known_regb & KRREG_ST) { int flags = 0; if (known_regs.gr[SSP_ST].h & SSP_FLAG_N) flags |= 8; if (known_regs.gr[SSP_ST].h & SSP_FLAG_Z) flags |= 4; EOP_MSR_IMM(4/2, flags); } else { EOP_MOV_REG_LSL(1, 6, 28); EOP_MSR_REG(1); hostreg_r[1] = -1; } dirty_regb |= KRREG_ST; } /* load 16bit val into host reg r0-r3. Nothing is trashed */ static void tr_mov16(int r, int val) { if (hostreg_r[r] != val) { emith_move_r_imm(r, val); hostreg_r[r] = val; } } static void tr_mov16_cond(int cond, int r, int val) { emith_op_imm(cond, 0, A_OP_MOV, r, val); hostreg_r[r] = -1; } /* trashes r1 */ static void tr_flush_dirty_pmcrs(void) { u32 i, val = (u32)-1; if (!(dirty_regb & 0x3ff80000)) return; if (dirty_regb & KRREG_PMC) { val = known_regs.pmc.v; emith_move_r_imm(1, val); EOP_STR_IMM(1,7,0x400+SSP_PMC*4); if (known_regs.emu_status & (SSP_PMC_SET|SSP_PMC_HAVE_ADDR)) { elprintf(EL_ANOMALY, "!! SSP_PMC_SET|SSP_PMC_HAVE_ADDR set on flush\n"); tr_unhandled(); } } for (i = 0; i < 5; i++) { if (dirty_regb & (1 << (20+i))) { if (val != known_regs.pmac_read[i]) { val = known_regs.pmac_read[i]; emith_move_r_imm(1, val); } EOP_STR_IMM(1,7,0x454+i*4); // pmac_read } if (dirty_regb & (1 << (25+i))) { if (val != known_regs.pmac_write[i]) { val = known_regs.pmac_write[i]; emith_move_r_imm(1, val); } EOP_STR_IMM(1,7,0x46c+i*4); // pmac_write } } dirty_regb &= ~0x3ff80000; hostreg_r[1] = -1; } /* read bank word to r0 (upper bits zero). Thrashes r1. */ static void tr_bank_read(int addr) /* word addr 0-0x1ff */ { int breg = 7; if (addr > 0x7f) { if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) { EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1) hostreg_r[1] = 0x100000|((addr&0x180)<<1); } breg = 1; } EOP_LDRH_IMM(0,breg,(addr&0x7f)<<1); // ldrh r0, [r1, (op&0x7f)<<1] hostreg_r[0] = -1; } /* write r0 to bank. Trashes r1. */ static void tr_bank_write(int addr) { int breg = 7; if (addr > 0x7f) { if (hostreg_r[1] != (0x100000|((addr&0x180)<<1))) { EOP_ADD_IMM(1,7,30/2,(addr&0x180)>>1); // add r1, r7, ((op&0x180)<<1) hostreg_r[1] = 0x100000|((addr&0x180)<<1); } breg = 1; } EOP_STRH_IMM(0,breg,(addr&0x7f)<<1); // strh r0, [r1, (op&0x7f)<<1] } /* handle RAM bank pointer modifiers. if need_modulo, trash r1-r3, else nothing */ static void tr_ptrr_mod(int r, int mod, int need_modulo, int count) { int modulo_shift = -1; /* unknown */ if (mod == 0) return; if (!need_modulo || mod == 1) // +! modulo_shift = 8; else if (need_modulo && (known_regb & KRREG_ST)) { modulo_shift = known_regs.gr[SSP_ST].h & 7; if (modulo_shift == 0) modulo_shift = 8; } if (modulo_shift == -1) { int reg = (r < 4) ? 8 : 9; tr_release_pr(r); if (dirty_regb & KRREG_ST) { // avoid flushing ARM flags EOP_AND_IMM(1, 6, 0, 0x70); EOP_SUB_IMM(1, 1, 0, 0x10); EOP_AND_IMM(1, 1, 0, 0x70); EOP_ADD_IMM(1, 1, 0, 0x10); } else { EOP_C_DOP_IMM(A_COND_AL,A_OP_AND,1,6,1,0,0x70); // ands r1, r6, #0x70 EOP_C_DOP_IMM(A_COND_EQ,A_OP_MOV,0,0,1,0,0x80); // moveq r1, #0x80 } EOP_MOV_REG_LSR(1, 1, 4); // mov r1, r1, lsr #4 EOP_RSB_IMM(2, 1, 0, 8); // rsb r1, r1, #8 EOP_MOV_IMM(3, 8/2, count); // mov r3, #0x01000000 if (r&3) EOP_ADD_IMM(1, 1, 0, (r&3)*8); // add r1, r1, #(r&3)*8 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1 if (mod == 2) EOP_SUB_REG2_LSL(reg,reg,3,2); // sub reg, reg, #0x01000000 << r2 else EOP_ADD_REG2_LSL(reg,reg,3,2); EOP_RSB_IMM(1, 1, 0, 32); // rsb r1, r1, #32 EOP_MOV_REG2_ROR(reg,reg,1); // mov reg, reg, ror r1 hostreg_r[1] = hostreg_r[2] = hostreg_r[3] = -1; } else if (known_regb & (1 << (r + 8))) { int modulo = (1 << modulo_shift) - 1; if (mod == 2) known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] - count) & modulo); else known_regs.r[r] = (known_regs.r[r] & ~modulo) | ((known_regs.r[r] + count) & modulo); } else { int reg = (r < 4) ? 8 : 9; int ror = ((r&3) + 1)*8 - (8 - modulo_shift); EOP_MOV_REG_ROR(reg,reg,ror); // {add|sub} reg, reg, #1<>2) & 3; // direct addressing tr_bank_write((op & 0x100) + mod); } else { int r = (op&3) | ((op>>6)&4); if (known_regb & (1 << (r + 8))) { tr_bank_write((op&0x100) | known_regs.r[r]); } else { int reg = (r < 4) ? 8 : 9; int ror = ((4 - (r&3))*8) & 0x1f; EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, if (r >= 4) EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<>2) & 3, 0, 1); } } /* read (rX) to r0. Trashes r1-r3. */ static void tr_rX_read(int r, int mod) { if ((r&3) == 3) { tr_bank_read(((r << 6) & 0x100) + mod); // direct addressing } else { if (known_regb & (1 << (r + 8))) { tr_bank_read(((r << 6) & 0x100) | known_regs.r[r]); } else { int reg = (r < 4) ? 8 : 9; int ror = ((4 - (r&3))*8) & 0x1f; EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, if (r >= 4) EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<>6)&4); // src if ((r&3) == 3) { tr_bank_read((op&0x100) | ((op>>2)&3)); } else if (known_regb & (1 << (r+8))) { tr_bank_read((op&0x100) | known_regs.r[r]); } else { int reg = (r < 4) ? 8 : 9; int ror = ((4 - (r&3))*8) & 0x1f; EOP_AND_IMM(1,reg,ror/2,0xff); // and r1, r{7,8}, if (r >= 4) EOP_ORR_IMM(1,1,((ror-8)&0x1f)/2,1); // orr r1, r1, 1<>2)&3)); } else if (known_regb & (1 << (r+8))) { tr_bank_write((op&0x100) | known_regs.r[r]); } else { EOP_STRH_SIMPLE(0,1); // strh r0, [r1] hostreg_r[1] = -1; } EOP_LDRH_SIMPLE(0,2); // ldrh r0, [r2] hostreg_r[0] = hostreg_r[2] = -1; } // check if AL is going to be used later in block static int tr_predict_al_need(void) { int tmpv, tmpv2, op, pc = known_regs.gr[SSP_PC].h; while (1) { op = PROGRAM(pc); switch (op >> 9) { // ld d, s case 0x00: tmpv2 = (op >> 4) & 0xf; // dst tmpv = op & 0xf; // src if ((tmpv2 == SSP_A && tmpv == SSP_P) || tmpv2 == SSP_AL) // ld A, P; ld AL, * return 0; break; // ld (ri), s case 0x02: // ld ri, s case 0x0a: // OP a, s case 0x10: case 0x30: case 0x40: case 0x60: case 0x70: tmpv = op & 0xf; // src if (tmpv == SSP_AL) // OP *, AL return 1; break; case 0x04: case 0x06: case 0x14: case 0x34: case 0x44: case 0x64: case 0x74: pc++; break; // call cond, addr case 0x24: // bra cond, addr case 0x26: // mod cond, op case 0x48: // mpys? case 0x1b: // mpya (rj), (ri), b case 0x4b: return 1; // mld (rj), (ri), b case 0x5b: return 0; // cleared anyway // and A, * case 0x50: tmpv = op & 0xf; // src if (tmpv == SSP_AL) return 1; case 0x51: case 0x53: case 0x54: case 0x55: case 0x59: case 0x5c: return 0; } pc++; } } /* get ARM cond which would mean that SSP cond is satisfied. No trash. */ static int tr_cond_check(int op) { int f = (op & 0x100) >> 8; switch (op&0xf0) { case 0x00: return A_COND_AL; /* always true */ case 0x50: /* Z matches f(?) bit */ if (dirty_regb & KRREG_ST) return f ? A_COND_EQ : A_COND_NE; EOP_TST_IMM(6, 0, 4); return f ? A_COND_NE : A_COND_EQ; case 0x70: /* N matches f(?) bit */ if (dirty_regb & KRREG_ST) return f ? A_COND_MI : A_COND_PL; EOP_TST_IMM(6, 0, 8); return f ? A_COND_NE : A_COND_EQ; default: elprintf(EL_ANOMALY, "unimplemented cond?\n"); tr_unhandled(); return 0; } } static int tr_neg_cond(int cond) { switch (cond) { case A_COND_AL: elprintf(EL_ANOMALY, "neg for AL?\n"); exit(1); case A_COND_EQ: return A_COND_NE; case A_COND_NE: return A_COND_EQ; case A_COND_MI: return A_COND_PL; case A_COND_PL: return A_COND_MI; default: elprintf(EL_ANOMALY, "bad cond for neg\n"); exit(1); } return 0; } static int tr_aop_ssp2arm(int op) { switch (op) { case 1: return A_OP_SUB; case 3: return A_OP_CMP; case 4: return A_OP_ADD; case 5: return A_OP_AND; case 6: return A_OP_ORR; case 7: return A_OP_EOR; } tr_unhandled(); return 0; } #ifdef __MACH__ /* spacial version of call for calling C needed on ios, since we use r9.. */ static void emith_call_c_func(void *target) { EOP_STMFD_SP(M2(7,9)); emith_call(target); EOP_LDMFD_SP(M2(7,9)); } #else #define emith_call_c_func emith_call #endif // ----------------------------------------------------- //@ r4: XXYY //@ r5: A //@ r6: STACK and emu flags //@ r7: SSP context //@ r10: P // read general reg to r0. Trashes r1 static void tr_GR0_to_r0(int op) { tr_mov16(0, 0xffff); } static void tr_X_to_r0(int op) { if (hostreg_r[0] != (SSP_X<<16)) { EOP_MOV_REG_LSR(0, 4, 16); // mov r0, r4, lsr #16 hostreg_r[0] = SSP_X<<16; } } static void tr_Y_to_r0(int op) { if (hostreg_r[0] != (SSP_Y<<16)) { EOP_MOV_REG_SIMPLE(0, 4); // mov r0, r4 hostreg_r[0] = SSP_Y<<16; } } static void tr_A_to_r0(int op) { if (hostreg_r[0] != (SSP_A<<16)) { EOP_MOV_REG_LSR(0, 5, 16); // mov r0, r5, lsr #16 @ AH hostreg_r[0] = SSP_A<<16; } } static void tr_ST_to_r0(int op) { // VR doesn't need much accuracy here.. EOP_MOV_REG_LSR(0, 6, 4); // mov r0, r6, lsr #4 EOP_AND_IMM(0, 0, 0, 0x67); // and r0, r0, #0x67 hostreg_r[0] = -1; } static void tr_STACK_to_r0(int op) { // 448 EOP_SUB_IMM(6, 6, 8/2, 0x20); // sub r6, r6, #1<<29 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28 EOP_LDRH_SIMPLE(0, 1); // ldrh r0, [r1] hostreg_r[0] = hostreg_r[1] = -1; } static void tr_PC_to_r0(int op) { tr_mov16(0, known_regs.gr[SSP_PC].h); } static void tr_P_to_r0(int op) { tr_flush_dirty_P(); EOP_MOV_REG_LSR(0, 10, 16); // mov r0, r10, lsr #16 hostreg_r[0] = -1; } static void tr_AL_to_r0(int op) { if (op == 0x000f) { if (known_regb & KRREG_PMC) { known_regs.emu_status &= ~(SSP_PMC_SET|SSP_PMC_HAVE_ADDR); } else { EOP_LDR_IMM(0,7,0x484); // ldr r1, [r7, #0x484] // emu_status EOP_BIC_IMM(0,0,0,SSP_PMC_SET|SSP_PMC_HAVE_ADDR); EOP_STR_IMM(0,7,0x484); } } if (hostreg_r[0] != (SSP_AL<<16)) { EOP_MOV_REG_SIMPLE(0, 5); // mov r0, r5 hostreg_r[0] = SSP_AL<<16; } } static void tr_PMX_to_r0(int reg) { if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET)) { known_regs.pmac_read[reg] = known_regs.pmc.v; known_regs.emu_status &= ~SSP_PMC_SET; known_regb |= 1 << (20+reg); dirty_regb |= 1 << (20+reg); return; } if ((known_regb & KRREG_PMC) && (known_regb & (1 << (20+reg)))) { u32 pmcv = known_regs.pmac_read[reg]; int mode = pmcv>>16; known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR; if ((mode & 0xfff0) == 0x0800) { EOP_LDR_IMM(1,7,0x488); // rom_ptr emith_move_r_imm(0, (pmcv&0xfffff)<<1); EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0] known_regs.pmac_read[reg] += 1; } else if ((mode & 0x47ff) == 0x0018) // DRAM { int inc = get_inc(mode); EOP_LDR_IMM(1,7,0x490); // dram_ptr emith_move_r_imm(0, (pmcv&0xffff)<<1); EOP_LDRH_REG(0,1,0); // ldrh r0, [r1, r0] if (reg == 4 && (pmcv == 0x187f03 || pmcv == 0x187f04)) // wait loop detection { int flag = (pmcv == 0x187f03) ? SSP_WAIT_30FE06 : SSP_WAIT_30FE08; tr_flush_dirty_ST(); EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status EOP_TST_REG_SIMPLE(0,0); EOP_C_DOP_IMM(A_COND_EQ,A_OP_SUB,0,11,11,22/2,1); // subeq r11, r11, #1024 EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1,24/2,flag>>8); // orreq r1, r1, #SSP_WAIT_30FE08 EOP_STR_IMM(1,7,0x484); // str r1, [r7, #0x484] // emu_status } known_regs.pmac_read[reg] += inc; } else { tr_unhandled(); } known_regs.pmc.v = known_regs.pmac_read[reg]; //known_regb |= KRREG_PMC; dirty_regb |= KRREG_PMC; dirty_regb |= 1 << (20+reg); hostreg_r[0] = hostreg_r[1] = -1; return; } known_regb &= ~KRREG_PMC; dirty_regb &= ~KRREG_PMC; known_regb &= ~(1 << (20+reg)); dirty_regb &= ~(1 << (20+reg)); // call the C code to handle this tr_flush_dirty_ST(); //tr_flush_dirty_pmcrs(); tr_mov16(0, reg); emith_call_c_func(ssp_pm_read); hostreg_clear(); } static void tr_PM0_to_r0(int op) { tr_PMX_to_r0(0); } static void tr_PM1_to_r0(int op) { tr_PMX_to_r0(1); } static void tr_PM2_to_r0(int op) { tr_PMX_to_r0(2); } static void tr_XST_to_r0(int op) { EOP_ADD_IMM(0, 7, 24/2, 4); // add r0, r7, #0x400 EOP_LDRH_IMM(0, 0, SSP_XST*4+2); } static void tr_PM4_to_r0(int op) { tr_PMX_to_r0(4); } static void tr_PMC_to_r0(int op) { if (known_regb & KRREG_PMC) { if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) { known_regs.emu_status |= SSP_PMC_SET; known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR; // do nothing - this is handled elsewhere } else { tr_mov16(0, known_regs.pmc.l); known_regs.emu_status |= SSP_PMC_HAVE_ADDR; } } else { EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status tr_flush_dirty_ST(); if (op != 0x000e) EOP_LDR_IMM(0, 7, 0x400+SSP_PMC*4); EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR); EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #.. EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #.. EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #.. EOP_STR_IMM(1,7,0x484); hostreg_r[0] = hostreg_r[1] = -1; } } typedef void (tr_read_func)(int op); static tr_read_func *tr_read_funcs[16] = { tr_GR0_to_r0, tr_X_to_r0, tr_Y_to_r0, tr_A_to_r0, tr_ST_to_r0, tr_STACK_to_r0, tr_PC_to_r0, tr_P_to_r0, tr_PM0_to_r0, tr_PM1_to_r0, tr_PM2_to_r0, tr_XST_to_r0, tr_PM4_to_r0, (tr_read_func *)tr_unhandled, tr_PMC_to_r0, tr_AL_to_r0 }; // write r0 to general reg handlers. Trashes r1 #define TR_WRITE_R0_TO_REG(reg) \ { \ hostreg_sspreg_changed(reg); \ hostreg_r[0] = (reg)<<16; \ if (const_val != -1) { \ known_regs.gr[reg].h = const_val; \ known_regb |= 1 << (reg); \ } else { \ known_regb &= ~(1 << (reg)); \ } \ } static void tr_r0_to_GR0(int const_val) { // do nothing } static void tr_r0_to_X(int const_val) { EOP_MOV_REG_LSL(4, 4, 16); // mov r4, r4, lsl #16 EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16 dirty_regb |= KRREG_P; // touching X or Y makes P dirty. TR_WRITE_R0_TO_REG(SSP_X); } static void tr_r0_to_Y(int const_val) { EOP_MOV_REG_LSR(4, 4, 16); // mov r4, r4, lsr #16 EOP_ORR_REG_LSL(4, 4, 0, 16); // orr r4, r4, r0, lsl #16 EOP_MOV_REG_ROR(4, 4, 16); // mov r4, r4, ror #16 dirty_regb |= KRREG_P; TR_WRITE_R0_TO_REG(SSP_Y); } static void tr_r0_to_A(int const_val) { if (tr_predict_al_need()) { EOP_MOV_REG_LSL(5, 5, 16); // mov r5, r5, lsl #16 EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16 @ AL EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16 } else EOP_MOV_REG_LSL(5, 0, 16); TR_WRITE_R0_TO_REG(SSP_A); } static void tr_r0_to_ST(int const_val) { // VR doesn't need much accuracy here.. EOP_AND_IMM(1, 0, 0, 0x67); // and r1, r0, #0x67 EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK EOP_ORR_REG_LSL(6, 6, 1, 4); // orr r6, r6, r1, lsl #4 TR_WRITE_R0_TO_REG(SSP_ST); hostreg_r[1] = -1; dirty_regb &= ~KRREG_ST; } static void tr_r0_to_STACK(int const_val) { // 448 EOP_ADD_IMM(1, 7, 24/2, 0x04); // add r1, r7, 0x400 EOP_ADD_IMM(1, 1, 0, 0x48); // add r1, r1, 0x048 EOP_ADD_REG_LSR(1, 1, 6, 28); // add r1, r1, r6, lsr #28 EOP_STRH_SIMPLE(0, 1); // strh r0, [r1] EOP_ADD_IMM(6, 6, 8/2, 0x20); // add r6, r6, #1<<29 hostreg_r[1] = -1; } static void tr_r0_to_PC(int const_val) { /* * do nothing - dispatcher will take care of this EOP_MOV_REG_LSL(1, 0, 16); // mov r1, r0, lsl #16 EOP_STR_IMM(1,7,0x400+6*4); // str r1, [r7, #(0x400+6*8)] hostreg_r[1] = -1; */ } static void tr_r0_to_AL(int const_val) { EOP_MOV_REG_LSR(5, 5, 16); // mov r5, r5, lsr #16 EOP_ORR_REG_LSL(5, 5, 0, 16); // orr r5, r5, r0, lsl #16 EOP_MOV_REG_ROR(5, 5, 16); // mov r5, r5, ror #16 hostreg_sspreg_changed(SSP_AL); if (const_val != -1) { known_regs.gr[SSP_A].l = const_val; known_regb |= 1 << SSP_AL; } else known_regb &= ~(1 << SSP_AL); } static void tr_r0_to_PMX(int reg) { if ((known_regb & KRREG_PMC) && (known_regs.emu_status & SSP_PMC_SET)) { known_regs.pmac_write[reg] = known_regs.pmc.v; known_regs.emu_status &= ~SSP_PMC_SET; known_regb |= 1 << (25+reg); dirty_regb |= 1 << (25+reg); return; } if ((known_regb & KRREG_PMC) && (known_regb & (1 << (25+reg)))) { int mode, addr; known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR; mode = known_regs.pmac_write[reg]>>16; addr = known_regs.pmac_write[reg]&0xffff; if ((mode & 0x43ff) == 0x0018) // DRAM { int inc = get_inc(mode); if (mode & 0x0400) tr_unhandled(); EOP_LDR_IMM(1,7,0x490); // dram_ptr emith_move_r_imm(2, addr << 1); EOP_STRH_REG(0,1,2); // strh r0, [r1, r2] known_regs.pmac_write[reg] += inc; } else if ((mode & 0xfbff) == 0x4018) // DRAM, cell inc { if (mode & 0x0400) tr_unhandled(); EOP_LDR_IMM(1,7,0x490); // dram_ptr emith_move_r_imm(2, addr << 1); EOP_STRH_REG(0,1,2); // strh r0, [r1, r2] known_regs.pmac_write[reg] += (addr&1) ? 31 : 1; } else if ((mode & 0x47ff) == 0x001c) // IRAM { int inc = get_inc(mode); EOP_LDR_IMM(1,7,0x48c); // iram_ptr emith_move_r_imm(2, (addr&0x3ff) << 1); EOP_STRH_REG(0,1,2); // strh r0, [r1, r2] EOP_MOV_IMM(1,0,1); EOP_STR_IMM(1,7,0x494); // iram_dirty known_regs.pmac_write[reg] += inc; } else tr_unhandled(); known_regs.pmc.v = known_regs.pmac_write[reg]; //known_regb |= KRREG_PMC; dirty_regb |= KRREG_PMC; dirty_regb |= 1 << (25+reg); hostreg_r[1] = hostreg_r[2] = -1; return; } known_regb &= ~KRREG_PMC; dirty_regb &= ~KRREG_PMC; known_regb &= ~(1 << (25+reg)); dirty_regb &= ~(1 << (25+reg)); // call the C code to handle this tr_flush_dirty_ST(); //tr_flush_dirty_pmcrs(); tr_mov16(1, reg); emith_call_c_func(ssp_pm_write); hostreg_clear(); } static void tr_r0_to_PM0(int const_val) { tr_r0_to_PMX(0); } static void tr_r0_to_PM1(int const_val) { tr_r0_to_PMX(1); } static void tr_r0_to_PM2(int const_val) { tr_r0_to_PMX(2); } static void tr_r0_to_PM4(int const_val) { tr_r0_to_PMX(4); } static void tr_r0_to_PMC(int const_val) { if ((known_regb & KRREG_PMC) && const_val != -1) { if (known_regs.emu_status & SSP_PMC_HAVE_ADDR) { known_regs.emu_status |= SSP_PMC_SET; known_regs.emu_status &= ~SSP_PMC_HAVE_ADDR; known_regs.pmc.h = const_val; } else { known_regs.emu_status |= SSP_PMC_HAVE_ADDR; known_regs.pmc.l = const_val; } } else { tr_flush_dirty_ST(); if (known_regb & KRREG_PMC) { emith_move_r_imm(1, known_regs.pmc.v); EOP_STR_IMM(1,7,0x400+SSP_PMC*4); known_regb &= ~KRREG_PMC; dirty_regb &= ~KRREG_PMC; } EOP_LDR_IMM(1,7,0x484); // ldr r1, [r7, #0x484] // emu_status EOP_ADD_IMM(2,7,24/2,4); // add r2, r7, #0x400 EOP_TST_IMM(1, 0, SSP_PMC_HAVE_ADDR); EOP_C_AM3_IMM(A_COND_EQ,1,0,2,0,0,1,SSP_PMC*4); // strxx r0, [r2, #SSP_PMC] EOP_C_AM3_IMM(A_COND_NE,1,0,2,0,0,1,SSP_PMC*4+2); EOP_C_DOP_IMM(A_COND_EQ,A_OP_ORR,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // orreq r1, r1, #.. EOP_C_DOP_IMM(A_COND_NE,A_OP_BIC,0, 1, 1, 0, SSP_PMC_HAVE_ADDR); // bicne r1, r1, #.. EOP_C_DOP_IMM(A_COND_NE,A_OP_ORR,0, 1, 1, 0, SSP_PMC_SET); // orrne r1, r1, #.. EOP_STR_IMM(1,7,0x484); hostreg_r[1] = hostreg_r[2] = -1; } } typedef void (tr_write_func)(int const_val); static tr_write_func *tr_write_funcs[16] = { tr_r0_to_GR0, tr_r0_to_X, tr_r0_to_Y, tr_r0_to_A, tr_r0_to_ST, tr_r0_to_STACK, tr_r0_to_PC, (tr_write_func *)tr_unhandled, tr_r0_to_PM0, tr_r0_to_PM1, tr_r0_to_PM2, (tr_write_func *)tr_unhandled, tr_r0_to_PM4, (tr_write_func *)tr_unhandled, tr_r0_to_PMC, tr_r0_to_AL }; static void tr_mac_load_XY(int op) { tr_rX_read(op&3, (op>>2)&3); // X EOP_MOV_REG_LSL(4, 0, 16); tr_rX_read(((op>>4)&3)|4, (op>>6)&3); // Y EOP_ORR_REG_SIMPLE(4, 0); dirty_regb |= KRREG_P; hostreg_sspreg_changed(SSP_X); hostreg_sspreg_changed(SSP_Y); known_regb &= ~KRREG_X; known_regb &= ~KRREG_Y; } // ----------------------------------------------------- static int tr_detect_set_pm(unsigned int op, int *pc, int imm) { u32 pmcv, tmpv; if (!((op&0xfef0) == 0x08e0 && (PROGRAM(*pc)&0xfef0) == 0x08e0)) return 0; // programming PMC: // ldi PMC, imm1 // ldi PMC, imm2 (*pc)++; pmcv = imm | (PROGRAM((*pc)++) << 16); known_regs.pmc.v = pmcv; known_regb |= KRREG_PMC; dirty_regb |= KRREG_PMC; known_regs.emu_status |= SSP_PMC_SET; n_in_ops++; // check for possible reg programming tmpv = PROGRAM(*pc); if ((tmpv & 0xfff8) == 0x08 || (tmpv & 0xff8f) == 0x80) { int is_write = (tmpv & 0xff8f) == 0x80; int reg = is_write ? ((tmpv>>4)&0x7) : (tmpv&0x7); if (reg > 4) tr_unhandled(); if ((tmpv & 0x0f) != 0 && (tmpv & 0xf0) != 0) tr_unhandled(); if (is_write) known_regs.pmac_write[reg] = pmcv; else known_regs.pmac_read[reg] = pmcv; known_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20)); dirty_regb |= is_write ? (1 << (reg+25)) : (1 << (reg+20)); known_regs.emu_status &= ~SSP_PMC_SET; (*pc)++; n_in_ops++; return 5; } tr_unhandled(); return 4; } static const short pm0_block_seq[] = { 0x0880, 0, 0x0880, 0, 0x0840, 0x60 }; static int tr_detect_pm0_block(unsigned int op, int *pc, int imm) { // ldi ST, 0 // ldi PM0, 0 // ldi PM0, 0 // ldi ST, 60h unsigned short *pp; if (op != 0x0840 || imm != 0) return 0; pp = PROGRAM_P(*pc); if (memcmp(pp, pm0_block_seq, sizeof(pm0_block_seq)) != 0) return 0; EOP_AND_IMM(6, 6, 8/2, 0xe0); // and r6, r6, #7<<29 @ preserve STACK EOP_ORR_IMM(6, 6, 24/2, 6); // orr r6, r6, 0x600 hostreg_sspreg_changed(SSP_ST); known_regs.gr[SSP_ST].h = 0x60; known_regb |= 1 << SSP_ST; dirty_regb &= ~KRREG_ST; (*pc) += 3*2; n_in_ops += 3; return 4*2; } static int tr_detect_rotate(unsigned int op, int *pc, int imm) { // @ 3DA2 and 426A // ld PMC, (r3|00) // ld (r3|00), PMC // ld -, AL if (op != 0x02e3 || PROGRAM(*pc) != 0x04e3 || PROGRAM(*pc + 1) != 0x000f) return 0; tr_bank_read(0); EOP_MOV_REG_LSL(0, 0, 4); EOP_ORR_REG_LSR(0, 0, 0, 16); tr_bank_write(0); (*pc) += 2; n_in_ops += 2; return 3; } // ----------------------------------------------------- static int translate_op(unsigned int op, int *pc, int imm, int *end_cond, int *jump_pc) { u32 tmpv, tmpv2, tmpv3; int ret = 0; known_regs.gr[SSP_PC].h = *pc; switch (op >> 9) { // ld d, s case 0x00: if (op == 0) { ret++; break; } // nop tmpv = op & 0xf; // src tmpv2 = (op >> 4) & 0xf; // dst if (tmpv2 == SSP_A && tmpv == SSP_P) { // ld A, P tr_flush_dirty_P(); EOP_MOV_REG_SIMPLE(5, 10); hostreg_sspreg_changed(SSP_A); known_regb &= ~(KRREG_A|KRREG_AL); ret++; break; } tr_read_funcs[tmpv](op); tr_write_funcs[tmpv2]((known_regb & (1 << tmpv)) ? known_regs.gr[tmpv].h : -1); if (tmpv2 == SSP_PC) { ret |= 0x10000; *end_cond = -A_COND_AL; } ret++; break; // ld d, (ri) case 0x01: { int r = (op&3) | ((op>>6)&4); int mod = (op>>2)&3; tmpv = (op >> 4) & 0xf; // dst ret = tr_detect_rotate(op, pc, imm); if (ret > 0) break; if (tmpv != 0) tr_rX_read(r, mod); else { int cnt = 1; while (PROGRAM(*pc) == op) { (*pc)++; cnt++; ret++; n_in_ops++; } tr_ptrr_mod(r, mod, 1, cnt); // skip } tr_write_funcs[tmpv](-1); if (tmpv == SSP_PC) { ret |= 0x10000; *end_cond = -A_COND_AL; } ret++; break; } // ld (ri), s case 0x02: tmpv = (op >> 4) & 0xf; // src tr_read_funcs[tmpv](op); tr_rX_write(op); ret++; break; // ld a, adr case 0x03: tr_bank_read(op&0x1ff); tr_r0_to_A(-1); ret++; break; // ldi d, imm case 0x04: tmpv = (op & 0xf0) >> 4; // dst ret = tr_detect_pm0_block(op, pc, imm); if (ret > 0) break; ret = tr_detect_set_pm(op, pc, imm); if (ret > 0) break; tr_mov16(0, imm); tr_write_funcs[tmpv](imm); if (tmpv == SSP_PC) { ret |= 0x10000; *jump_pc = imm; } ret += 2; break; // ld d, ((ri)) case 0x05: tmpv2 = (op >> 4) & 0xf; // dst tr_rX_read2(op); tr_write_funcs[tmpv2](-1); if (tmpv2 == SSP_PC) { ret |= 0x10000; *end_cond = -A_COND_AL; } ret += 3; break; // ldi (ri), imm case 0x06: tr_mov16(0, imm); tr_rX_write(op); ret += 2; break; // ld adr, a case 0x07: tr_A_to_r0(op); tr_bank_write(op&0x1ff); ret++; break; // ld d, ri case 0x09: { int r; r = (op&3) | ((op>>6)&4); // src tmpv2 = (op >> 4) & 0xf; // dst if ((r&3) == 3) tr_unhandled(); if (known_regb & (1 << (r+8))) { tr_mov16(0, known_regs.r[r]); tr_write_funcs[tmpv2](known_regs.r[r]); } else { int reg = (r < 4) ? 8 : 9; if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, hostreg_r[0] = -1; tr_write_funcs[tmpv2](-1); } ret++; break; } // ld ri, s case 0x0a: { int r; r = (op&3) | ((op>>6)&4); // dst tmpv = (op >> 4) & 0xf; // src if ((r&3) == 3) tr_unhandled(); if (known_regb & (1 << tmpv)) { known_regs.r[r] = known_regs.gr[tmpv].h; known_regb |= 1 << (r + 8); dirty_regb |= 1 << (r + 8); } else { int reg = (r < 4) ? 8 : 9; int ror = ((4 - (r&3))*8) & 0x1f; tr_read_funcs[tmpv](op); EOP_BIC_IMM(reg, reg, ror/2, 0xff); // bic r{7,8}, r{7,8}, EOP_AND_IMM(0, 0, 0, 0xff); // and r0, r0, 0xff EOP_ORR_REG_LSL(reg, reg, 0, (r&3)*8); // orr r{7,8}, r{7,8}, r0, lsl #lsl hostreg_r[0] = -1; known_regb &= ~(1 << (r+8)); dirty_regb &= ~(1 << (r+8)); } ret++; break; } // ldi ri, simm case 0x0c: case 0x0d: case 0x0e: case 0x0f: tmpv = (op>>8)&7; known_regs.r[tmpv] = op; known_regb |= 1 << (tmpv + 8); dirty_regb |= 1 << (tmpv + 8); ret++; break; // call cond, addr case 0x24: { u32 *jump_op = NULL; tmpv = tr_cond_check(op); if (tmpv != A_COND_AL) { jump_op = tcache_ptr; EOP_MOV_IMM(0, 0, 0); // placeholder for branch } tr_mov16(0, *pc); tr_r0_to_STACK(*pc); if (tmpv != A_COND_AL) EOP_C_B_PTR(jump_op, tr_neg_cond(tmpv), 0, tcache_ptr - jump_op - 2); tr_mov16_cond(tmpv, 0, imm); if (tmpv != A_COND_AL) tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc); tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1); ret |= 0x10000; *end_cond = tmpv; *jump_pc = imm; ret += 2; break; } // ld d, (a) case 0x25: tmpv2 = (op >> 4) & 0xf; // dst tr_A_to_r0(op); EOP_LDR_IMM(1,7,0x48c); // ptr_iram_rom EOP_ADD_REG_LSL(0,1,0,1); // add r0, r1, r0, lsl #1 EOP_LDRH_SIMPLE(0,0); // ldrh r0, [r0] hostreg_r[0] = hostreg_r[1] = -1; tr_write_funcs[tmpv2](-1); if (tmpv2 == SSP_PC) { ret |= 0x10000; *end_cond = -A_COND_AL; } ret += 3; break; // bra cond, addr case 0x26: tmpv = tr_cond_check(op); tr_mov16_cond(tmpv, 0, imm); if (tmpv != A_COND_AL) tr_mov16_cond(tr_neg_cond(tmpv), 0, *pc); tr_r0_to_PC(tmpv == A_COND_AL ? imm : -1); ret |= 0x10000; *end_cond = tmpv; *jump_pc = imm; ret += 2; break; // mod cond, op case 0x48: { // check for repeats of this op tmpv = 1; // count while (PROGRAM(*pc) == op && (op & 7) != 6) { (*pc)++; tmpv++; n_in_ops++; } if ((op&0xf0) != 0) // !always tr_make_dirty_ST(); tmpv2 = tr_cond_check(op); switch (op & 7) { case 2: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_ASR,5); break; // shr (arithmetic) case 3: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_MOV,1,0,5,tmpv,A_AM1_LSL,5); break; // shl case 6: EOP_C_DOP_IMM(tmpv2,A_OP_RSB,1,5,5,0,0); break; // neg case 7: EOP_C_DOP_REG_XIMM(tmpv2,A_OP_EOR,0,5,1,31,A_AM1_ASR,5); // eor r1, r5, r5, asr #31 EOP_C_DOP_REG_XIMM(tmpv2,A_OP_ADD,1,1,5,31,A_AM1_LSR,5); // adds r5, r1, r5, lsr #31 hostreg_r[1] = -1; break; // abs default: tr_unhandled(); } hostreg_sspreg_changed(SSP_A); dirty_regb |= KRREG_ST; known_regb &= ~KRREG_ST; known_regb &= ~(KRREG_A|KRREG_AL); ret += tmpv; break; } // mpys? case 0x1b: tr_flush_dirty_P(); tr_mac_load_XY(op); tr_make_dirty_ST(); EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_SUB,1,5,5,0,A_AM1_LSL,10); // subs r5, r5, r10 hostreg_sspreg_changed(SSP_A); known_regb &= ~(KRREG_A|KRREG_AL); dirty_regb |= KRREG_ST; ret++; break; // mpya (rj), (ri), b case 0x4b: tr_flush_dirty_P(); tr_mac_load_XY(op); tr_make_dirty_ST(); EOP_C_DOP_REG_XIMM(A_COND_AL,A_OP_ADD,1,5,5,0,A_AM1_LSL,10); // adds r5, r5, r10 hostreg_sspreg_changed(SSP_A); known_regb &= ~(KRREG_A|KRREG_AL); dirty_regb |= KRREG_ST; ret++; break; // mld (rj), (ri), b case 0x5b: EOP_C_DOP_IMM(A_COND_AL,A_OP_MOV,1,0,5,0,0); // movs r5, #0 hostreg_sspreg_changed(SSP_A); known_regs.gr[SSP_A].v = 0; known_regb |= (KRREG_A|KRREG_AL); dirty_regb |= KRREG_ST; tr_mac_load_XY(op); ret++; break; // OP a, s case 0x10: case 0x30: case 0x40: case 0x50: case 0x60: case 0x70: tmpv = op & 0xf; // src tmpv2 = tr_aop_ssp2arm(op>>13); // op tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5; if (tmpv == SSP_P) { tr_flush_dirty_P(); EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL,10); // OPs r5, r5, r10 } else if (tmpv == SSP_A) { EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3, 0,A_AM1_LSL, 5); // OPs r5, r5, r5 } else { tr_read_funcs[tmpv](op); EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL, 0); // OPs r5, r5, r0, lsl #16 } hostreg_sspreg_changed(SSP_A); known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST); dirty_regb |= KRREG_ST; ret++; break; // OP a, (ri) case 0x11: case 0x31: case 0x41: case 0x51: case 0x61: case 0x71: tmpv2 = tr_aop_ssp2arm(op>>13); // op tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5; tr_rX_read((op&3)|((op>>6)&4), (op>>2)&3); EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16 hostreg_sspreg_changed(SSP_A); known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST); dirty_regb |= KRREG_ST; ret++; break; // OP a, adr case 0x13: case 0x33: case 0x43: case 0x53: case 0x63: case 0x73: tmpv2 = tr_aop_ssp2arm(op>>13); // op tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5; tr_bank_read(op&0x1ff); EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16 hostreg_sspreg_changed(SSP_A); known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST); dirty_regb |= KRREG_ST; ret++; break; // OP a, imm case 0x14: case 0x34: case 0x44: case 0x54: case 0x64: case 0x74: tmpv = (op & 0xf0) >> 4; tmpv2 = tr_aop_ssp2arm(op>>13); // op tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5; tr_mov16(0, imm); EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16 hostreg_sspreg_changed(SSP_A); known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST); dirty_regb |= KRREG_ST; ret += 2; break; // OP a, ((ri)) case 0x15: case 0x35: case 0x45: case 0x55: case 0x65: case 0x75: tmpv2 = tr_aop_ssp2arm(op>>13); // op tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5; tr_rX_read2(op); EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16 hostreg_sspreg_changed(SSP_A); known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST); dirty_regb |= KRREG_ST; ret += 3; break; // OP a, ri case 0x19: case 0x39: case 0x49: case 0x59: case 0x69: case 0x79: { int r; tmpv2 = tr_aop_ssp2arm(op>>13); // op tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5; r = (op&3) | ((op>>6)&4); // src if ((r&3) == 3) tr_unhandled(); if (known_regb & (1 << (r+8))) { EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,known_regs.r[r]); // OPs r5, r5, #val<<16 } else { int reg = (r < 4) ? 8 : 9; if (r&3) EOP_MOV_REG_LSR(0, reg, (r&3)*8); // mov r0, r{7,8}, lsr #lsr EOP_AND_IMM(0, (r&3)?0:reg, 0, 0xff); // and r0, r{7,8}, EOP_C_DOP_REG_XIMM(A_COND_AL,tmpv2,1,5,tmpv3,16,A_AM1_LSL,0); // OPs r5, r5, r0, lsl #16 hostreg_r[0] = -1; } hostreg_sspreg_changed(SSP_A); known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST); dirty_regb |= KRREG_ST; ret++; break; } // OP simm case 0x1c: case 0x3c: case 0x4c: case 0x5c: case 0x6c: case 0x7c: tmpv2 = tr_aop_ssp2arm(op>>13); // op tmpv3 = (tmpv2 == A_OP_CMP) ? 0 : 5; EOP_C_DOP_IMM(A_COND_AL,tmpv2,1,5,tmpv3,16/2,op & 0xff); // OPs r5, r5, #val<<16 hostreg_sspreg_changed(SSP_A); known_regb &= ~(KRREG_A|KRREG_AL|KRREG_ST); dirty_regb |= KRREG_ST; ret++; break; } n_in_ops++; return ret; } static void emit_block_prologue(void) { // check if there are enough cycles.. // note: r0 must contain PC of current block EOP_CMP_IMM(11,0,0); // cmp r11, #0 emith_jump_cond(A_COND_LE, ssp_drc_end); } /* cond: * >0: direct (un)conditional jump * <0: indirect jump */ static void *emit_block_epilogue(int cycles, int cond, int pc, int end_pc) { void *end_ptr = NULL; if (cycles > 0xff) { elprintf(EL_ANOMALY, "large cycle count: %i\n", cycles); cycles = 0xff; } EOP_SUB_IMM(11,11,0,cycles); // sub r11, r11, #cycles if (cond < 0 || (end_pc >= 0x400 && pc < 0x400)) { // indirect jump, or rom -> iram jump, must use dispatcher emith_jump(ssp_drc_next); } else if (cond == A_COND_AL) { u32 *target = (pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] : ssp_block_table[pc]; if (target != NULL) emith_jump(target); else emith_jump(ssp_drc_next); } else { u32 *target1 = (pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + pc] : ssp_block_table[pc]; u32 *target2 = (end_pc < 0x400) ? ssp_block_table_iram[ssp->drc.iram_context * SSP_BLOCKTAB_IRAM_ONE + end_pc] : ssp_block_table[end_pc]; if (target1 != NULL) emith_jump_cond(cond, target1); if (target2 != NULL) emith_jump_cond(tr_neg_cond(cond), target2); // neg_cond, to be able to swap jumps if needed #ifndef __EPOC32__ // emit patchable branches if (target1 == NULL) emith_call_cond(cond, ssp_drc_next_patch); if (target2 == NULL) emith_call_cond(tr_neg_cond(cond), ssp_drc_next_patch); #else // won't patch indirect jumps if (target1 == NULL || target2 == NULL) emith_jump(ssp_drc_next); #endif } if (end_ptr == NULL) end_ptr = tcache_ptr; return end_ptr; } void *ssp_translate_block(int pc) { unsigned int op, op1, imm, ccount = 0; unsigned int *block_start, *block_end; int ret, end_cond = A_COND_AL, jump_pc = -1; //printf("translate %04x -> %04x\n", pc<<1, (tcache_ptr-tcache)<<2); block_start = tcache_ptr; known_regb = 0; dirty_regb = KRREG_P; known_regs.emu_status = 0; hostreg_clear(); emit_block_prologue(); for (; ccount < 100;) { op = PROGRAM(pc++); op1 = op >> 9; imm = (u32)-1; if ((op1 & 0xf) == 4 || (op1 & 0xf) == 6) imm = PROGRAM(pc++); // immediate ret = translate_op(op, &pc, imm, &end_cond, &jump_pc); if (ret <= 0) { elprintf(EL_ANOMALY, "NULL func! op=%08x (%02x)\n", op, op1); //exit(1); } ccount += ret & 0xffff; if (ret & 0x10000) break; } if (ccount >= 100) { end_cond = A_COND_AL; jump_pc = pc; emith_move_r_imm(0, pc); } tr_flush_dirty_prs(); tr_flush_dirty_ST(); tr_flush_dirty_pmcrs(); block_end = emit_block_epilogue(ccount, end_cond, jump_pc, pc); emith_pool_commit(0); emith_flush(); if (tcache_ptr - (u32 *)tcache > DRC_TCACHE_SIZE/4) { elprintf(EL_ANOMALY|EL_STATUS|EL_SVP, "tcache overflow!\n"); fflush(stdout); exit(1); } // stats nblocks++; //printf("%i blocks, %i bytes, k=%.3f\n", nblocks, (tcache_ptr - tcache)*4, // (double)(tcache_ptr - tcache) / (double)n_in_ops); #ifdef DUMP_BLOCK { FILE *f = fopen("tcache.bin", "wb"); fwrite(tcache, 1, (tcache_ptr - tcache)*4, f); fclose(f); } printf("dumped tcache.bin\n"); exit(0); #endif #ifdef __arm__ cache_flush_d_inval_i(block_start, block_end); #endif return block_start; } // ----------------------------------------------------- static void ssp1601_state_load(void) { ssp->drc.iram_dirty = 1; ssp->drc.iram_context = 0; } void ssp1601_dyn_exit(void) { free(ssp_block_table); free(ssp_block_table_iram); ssp_block_table = ssp_block_table_iram = NULL; drc_cmn_cleanup(); } int ssp1601_dyn_startup(void) { drc_cmn_init(); ssp_block_table = calloc(sizeof(ssp_block_table[0]), SSP_BLOCKTAB_ENTS); if (ssp_block_table == NULL) return -1; ssp_block_table_iram = calloc(sizeof(ssp_block_table_iram[0]), SSP_BLOCKTAB_IRAM_ENTS); if (ssp_block_table_iram == NULL) { free(ssp_block_table); return -1; } memset(tcache, 0, DRC_TCACHE_SIZE); tcache_ptr = (void *)tcache; PicoLoadStateHook = ssp1601_state_load; n_in_ops = 0; #ifdef __arm__ // hle'd blocks ssp_block_table[0x800/2] = (void *) ssp_hle_800; ssp_block_table[0x902/2] = (void *) ssp_hle_902; ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x030/2] = (void *) ssp_hle_07_030; ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x036/2] = (void *) ssp_hle_07_036; ssp_block_table_iram[ 7 * SSP_BLOCKTAB_IRAM_ONE + 0x6d6/2] = (void *) ssp_hle_07_6d6; ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x12c/2] = (void *) ssp_hle_11_12c; ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x384/2] = (void *) ssp_hle_11_384; ssp_block_table_iram[11 * SSP_BLOCKTAB_IRAM_ONE + 0x38a/2] = (void *) ssp_hle_11_38a; #endif return 0; } void ssp1601_dyn_reset(ssp1601_t *ssp) { ssp1601_reset(ssp); ssp->drc.iram_dirty = 1; ssp->drc.iram_context = 0; // must do this here because ssp is not available @ startup() ssp->drc.ptr_rom = (u32) Pico.rom; ssp->drc.ptr_iram_rom = (u32) svp->iram_rom; ssp->drc.ptr_dram = (u32) svp->dram; ssp->drc.ptr_btable = (u32) ssp_block_table; ssp->drc.ptr_btable_iram = (u32) ssp_block_table_iram; // prevent new versions of IRAM from appearing memset(svp->iram_rom, 0, 0x800); } void ssp1601_dyn_run(int cycles) { if (ssp->emu_status & SSP_WAIT_MASK) return; #ifdef DUMP_BLOCK ssp_translate_block(DUMP_BLOCK >> 1); #endif #ifdef __arm__ ssp_drc_entry(ssp, cycles); #endif }